614 research outputs found

    Identifying critically important vascular access outcomes for trials in haemodialysis : an international survey with patients, caregivers and health professionals

    Get PDF
    BACKGROUND: Vascular access outcomes reported across haemodialysis (HD) trials are numerous, heterogeneous and not always relevant to patients and clinicians. This study aimed to identify critically important vascular access outcomes. METHOD: Outcomes derived from a systematic review, multi-disciplinary expert panel and patient input were included in a multilanguage online survey. Participants rated the absolute importance of outcomes using a 9-point Likert scale (7-9 being critically important). The relative importance was determined by a best-worst scale using multinomial logistic regression. Open text responses were analysed thematically. RESULTS: The survey was completed by 873 participants [224 (26%) patients/caregivers and 649 (74%) health professionals] from 58 countries. Vascular access function was considered the most important outcome (mean score 7.8 for patients and caregivers/8.5 for health professionals, with 85%/95% rating it critically important, and top ranked on best-worst scale), followed by infection (mean 7.4/8.2, 79%/92% rating it critically important, second rank on best-worst scale). Health professionals rated all outcomes of equal or higher importance than patients/caregivers, except for aneurysms. We identified six themes: necessity for HD, applicability across vascular access types, frequency and severity of debilitation, minimizing the risk of hospitalization and death, optimizing technical competence and adherence to best practice and direct impact on appearance and lifestyle. CONCLUSIONS: Vascular access function was the most critically important outcome among patients/caregivers and health professionals. Consistent reporting of this outcome across trials in HD will strengthen their value in supporting vascular access practice and shared decision making in patients requiring HD

    Particulate Matter Exposure Exacerbates High Glucose-Induced Cardiomyocyte Dysfunction through ROS Generation

    Get PDF
    Diabetes mellitus and fine particulate matter from diesel exhaust (DEP) are both important contributors to the development of cardiovascular disease (CVD). Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter) can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS) generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml), and/or high glucose (HG, 25.5 mM). Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS), time-to-90% shortening (TPS90), time-to-90% relengthening (TR90) and maximal velocities of shortening/relengthening (±dL/dt), using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine) completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated cardiomyocytes exposed to HG-containing media, which is potentially mediated by various ROS generation pathways

    The NIRS Analysis Package: Noise Reduction and Statistical Inference

    Get PDF
    Near infrared spectroscopy (NIRS) is a non-invasive optical imaging technique that can be used to measure cortical hemodynamic responses to specific stimuli or tasks. While analyses of NIRS data are normally adapted from established fMRI techniques, there are nevertheless substantial differences between the two modalities. Here, we investigate the impact of NIRS-specific noise; e.g., systemic (physiological), motion-related artifacts, and serial autocorrelations, upon the validity of statistical inference within the framework of the general linear model. We present a comprehensive framework for noise reduction and statistical inference, which is custom-tailored to the noise characteristics of NIRS. These methods have been implemented in a public domain Matlab toolbox, the NIRS Analysis Package (NAP). Finally, we validate NAP using both simulated and actual data, showing marked improvement in the detection power and reliability of NIRS

    A Novel Approach to Molecular Recognition Surface of Magnetic Nanoparticles Based on Host–Guest Effect

    Get PDF
    A novel route has been developed to prepared β-cyclodextrin (β-CD) functionalized magnetic nanoparticles (MNPs). The MNPs were first modified with monotosyl-poly(ethylene glycol) (PEG) silane and then tosyl units were displaced by amino-β-CD through the nucleophilic substitution reaction. The monotosyl-PEG silane was synthesized by modifying a PEG diol to form the corresponding monotosyl-PEG, followed by a reaction with 3-isocyanatopropyltriethoxysilane (IPTS). The success of the synthesis of the monotosyl-PEG silane was confirmed with1H NMR and Fourier transform infrared (FTIR) spectroscopy. The analysis of FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the immobilization of β-CD onto MNPs. Transmission electron microscopy (TEM) indicated that the β-CD functionalized MNPs were mostly present as individual nonclustered units in water. The number of β-CD molecules immobilized on each MNP was about 240 according to the thermogravimetric analysis (TGA) results. The as-prepared β-CD functionalized MNPs were used to detect dopamine with the assistance of a magnet

    CD(8+ )T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis

    Get PDF
    BACKGROUND: Several studies have implicated a role of inflammation in the pathogenesis of lung damage in idiopathic pulmonary fibrosis (IPF). Parenchymal lung damage leads to defects in mechanics and gas exchange and clinically manifests with exertional dyspnea. Investigations of inflammatory cells in IPF have shown that eosinophils, neutrophils and CD(8+ )TLs may be associated with worse prognosis. We wished to investigate by quantitative immunohistochemistry infiltrating macrophages, neutrophils and T lymphocytes (TLs) subpopulations (CD(3+), CD(4+ )and CD(8+)) in lung tissue of patients with IPF and their correlation with lung function indices and grade of dyspnoea. METHODS: Surgical biopsies of 12 patients with IPF were immunohistochemically stained with mouse monoclonal antibodies (anti-CD(68 )for macrophages, anti-elastase for neutrophils, and anti-CD(3), anti-CD(4), anti-CD(8 )for CD(3+)TLs, CD(4+)TLs, and CD(8+)TLs respectively). The number of positively stained cells was determined by observer-interactive computerized image analysis (SAMBA microscopic image processor). Cell numbers were expressed in percentage of immunopositive nuclear surface in relation to the total nuclear surface of infiltrative cells within the tissue (labeling Index). Correlations were performed between cell numbers and physiological indices [FEV(1), FVC, TLC, DLCO, PaO(2), PaCO(2 )and P(A-a)O(2))] as well as dyspnoea scores assessed by the Medical Research Council (MRC) scale. RESULTS: Elastase positive cells accounted for the 7.04% ± 1.1 of total cells, CD(68+ )cells for the 16.6% ± 2, CD(3+ )TLs for the 28.8% ± 7, CD(4+ )TLs for the 14.5 ± 4 and CD(8+ )TLs for the 13.8 ± 4. CD(8+)TLs correlated inversely with FVC % predicted (r(s )= -0.67, p = 0.01), TLC % predicted (r(s )= -0.68, p = 0.01), DLCO % predicted (r(s )= -0.61, p = 0.04), and PaO(2 )(r(s )= -0.60, p = 0.04). Positive correlations were found between CD(8+)TLs and P(A-a)O(2 )(r(s )= 0.65, p = 0.02) and CD(8+)TLs and MRC score (r(s )= 0.63, p = 0.02). Additionally, CD(68+ )cells presented negative correlations with both FVC % predicted (r(s )= -0.80, p = 0.002) and FEV(1 )% predicted (r(s )= -0.68, p = 0.01). CONCLUSION: In UIP/IPF tissue infiltrating mononuclear cells and especially CD(8+ )TLs are associated with the grade of dyspnoea and functional parameters of disease severity implicating that they might play a role in its pathogenesis

    AST1306, A Novel Irreversible Inhibitor of the Epidermal Growth Factor Receptor 1 and 2, Exhibits Antitumor Activity Both In Vitro and In Vivo

    Get PDF
    Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR) and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/Nneu transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h) and sustained (≥24 h) inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells

    The Drosophila Gap Gene Network Is Composed of Two Parallel Toggle Switches

    Get PDF
    Drosophila “gap” genes provide the first response to maternal gradients in the early fly embryo. Gap genes are expressed in a series of broad bands across the embryo during first hours of development. The gene network controlling the gap gene expression patterns includes inputs from maternal gradients and mutual repression between the gap genes themselves. In this study we propose a modular design for the gap gene network, involving two relatively independent network domains. The core of each network domain includes a toggle switch corresponding to a pair of mutually repressive gap genes, operated in space by maternal inputs. The toggle switches present in the gap network are evocative of the phage lambda switch, but they are operated positionally (in space) by the maternal gradients, so the synthesis rates for the competing components change along the embryo anterior-posterior axis. Dynamic model, constructed based on the proposed principle, with elements of fractional site occupancy, required 5–7 parameters to fit quantitative spatial expression data for gap gradients. The identified model solutions (parameter combinations) reproduced major dynamic features of the gap gradient system and explained gap expression in a variety of segmentation mutants
    corecore