68 research outputs found

    DNA methylation and regulatory elements during chicken germline stem cell differentiation

    Get PDF
    Funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.The production of germ cells in vitro would open important new avenues for stem biology and human medicine, but the mechanisms of germ cell differentiation are not well understood. The chicken, as a great model for embryology and development, was used in this study to help us explore its regulatory mechanisms. In this study, we reported a comprehensive genome-wide DNA methylation landscape in chicken germ cells, and transcriptomic dynamics was also presented. By uncovering DNA methylation patterns on individual genes, some genes accurately modulated by DNA methylation were found to be associated with cancers and virus infection, e.g., AKT1 and CTNNB1. Chicken-unique markers were also discovered for identifying male germ cells. Importantly, integrated epigenetic mechanisms were explored during male germ cell differentiation, which provides deep insight into the epigenetic processes associated with male germ cell differentiation and possibly improves treatment options to male infertility in animals and humans

    Study on the Function and Mechanism of Lin28B in the Formation of Chicken Primordial Germ Cells

    No full text
    Lin28A and Lin28B are two homologues of the same family of RNA binding proteins (RBPs). The function and molecular mechanism of Lin28A in the formation of primordial germ cells (PGCs) are very clear, but the related research on Lin28B is rarely reported. Here, we found that the overexpression of Lin28B can promote the formation of PGC in vivo. Furthermore, the overexpression of Lin28B also resulted in the inhibition of totipotency gene expression and upregulated the PGCs marker genes, and a significant increase in the number of PGCs in genital ridge, as detected by Periodic Acid-Schiff(PAS) staining. However, the inhibited Lin28B expression showed completely opposite results, which were confirmed on the PGC induction model in vitro. Mechanistically, we found that the overexpression of Lin28B can inhibit the maturation of let-7a-3p, and the results of high-throughput sequencing indicated that let-7a-3p was a negative regulator of the formation process of PGCs. Therefore, we conclude that our results determine that Lin28B participates in the formation of PGCs through let-7a-3p, which set a theoretical foundation for improving the function and mechanism of Lin28 family in the formation of PGCs

    5-Azacytidine-Induced Cardiomyocyte Differentiation of Very Small Embryonic-Like Stem Cells

    No full text
    The use of stem cells in generating cell-based pacemaker therapies for bradyarrhythmia is currently being considered. Due to the propensity of stem cells to form tumors, as well as ethical issues surrounding their use, the seed cells used in cardiac biological pacemakers have limitations. Very small embryonic-like stem cells (VSELs) are a unique and rare adult stem cell population, which have the same structural, genetic, biochemical, and functional characteristics as embryonic stem cells without the ethical controversy. In this study, we investigated the ability of rat bone marrow- (BM-) derived VSELs to differentiate in vitro into cardiomyocytes by 5-Azacytidine (5-AzaC) treatment. The morphology of VSELs treated with 10 μM 5-AzaC increased in volume and gradually changed to cardiomyocyte-like morphology without massive cell death. Additionally, mRNA expression of the cardiomyocyte markers cardiac troponin-T (cTnT) and α-sarcomeric actin (α-actin) was significantly upregulated after 5-AzaC treatment. Conversely, stem cell markers such as Nanog, Oct-4, and Sox2 were continuously downregulated posttreatment. On day 14 post-5-AzaC treatment, the positive expression rates of cTnT and α-actin were 18.41±1.51% and 19.43±0.51%, respectively. Taken together, our results showed that rat BM-VSELs have the ability to differentiate into cardiomyocytes in vitro. These findings suggest that VSELs would be useful as seed cells in exploring the mechanism of biological pacemaker activity

    Inhibition of Autophagy Maintains ESC Pluripotency and Inhibits Primordial Germ Cell Formation in Chickens

    No full text
    Autophagy plays an important role in the pluripotency and differentiation of stem cells. Transcriptome data showed that the autophagy genes MAP1LC3A and MAP1LC3B were significantly upregulated in primordial germ cells (PGCs). The Kyoto Encyclopedia of Genes and Genome (KEGG) results showed that the lysosome signaling pathway, which is related to autophagy, was significantly enriched in PGCs. Quantitative RT-PCR, western blotting, and transmission electron microscopy (TEM) results showed that autophagy was expressed in both embryonic stem cells (ESCs) and PGCs but was significantly activated in PGCs. To explore the role of autophagy in the differentiation of chicken ESCs into PGCs, autophagy was activated and inhibited using rapamycin and bafilomycin A1, respectively. Results of qRT-PCR, flow cytometry, and indirect immunofluorescence showed that the efficiency of PGC formation significantly decreased after autophagy inhibition. Our results showed, for the first time, that autophagy plays an indispensable role in the formation of chicken PGCs, which lays the foundation for studying the mechanism of autophagy in chicken PGCs and in bird gene editing and the rescue of endangered birds

    Promotion of Differentiating Bone Marrow Mesenchymal Stromal Cells (BMSCs) into Cardiomyocytes via HCN2 and HCN4 Cotransfection

    No full text
    Aim. Investigation of the influences HCN2 and HCN4 has on bone marrow mesenchymal stromal cells (BMSCs) on cardiomyocyte differentiation. Methods. Miniature adult pigs were used for bone marrow extraction and isolation of BMSCs. The identification of these BMSCs was done by using flow cytometry for the detection of expressed surface antigens CD45, CD11B, CD44, and CD90. Using HCN2 and HCN4 genes cotransfected into BMSCs as group HCN2+HCN4 while myocardial induction solution was used to induced BMSC differentiation in the BMSC induction group. Myocardial marker proteins α-actin and cTnT were detected by immunofluorescence staining, while α-actin, cTnT, and Desmin myocardial marker proteins expressed were detected by Western blot. The whole-cell patch-clamp technique was used to identify and detect cellular HCN2 channels, HCN4 channel current activation curve, and the inhibitory effect of CsCl on heterologous expression currents. Results. Flow cytometry results showed that CD45 and CD11B were expressed negatively while CD90 and CD44 were positive. Post HCN2 and HCN4 gene transfection, immunofluorescence staining, and Western blot showed significantly increased HCN2, HCN4, α-actin, and cTnT expressed in group HCN2+HCN4 were, which could be compared to the expression levels in the BMSC-induced group. The HCN2+HCN4 group was able to document cell membrane channel ion currents that were similar to If properties. Conclusion. HCN2 and HCN4 overexpression can considerably enhance the MSC ability to differentiate into cardiomyocytes in vitro and restore the ionic current

    Effects of Insulin on Proliferation, Apoptosis, and Ferroptosis in Primordial Germ Cells via PI3K-AKT-mTOR Signaling Pathway

    No full text
    Primordial germ cells (PGCs) are essential for the genetic modification, resource conservation, and recovery of endangered breeds in chickens and need to remain viable and proliferative in vitro. Therefore, there is an urgent need to elucidate the functions of the influencing factors and their regulatory mechanisms. In this study, PGCs collected from Rugao yellow chicken embryonic eggs at Day 5.5 were cultured in media containing 0, 5, 10, 20, 50, and 100 μg/mL insulin. The results showed that insulin regulates cell proliferation in PGCs in a dose-dependent way, with an optimal dose of 10 μg/mL. Insulin mediates the mRNA expression of cell cycle-, apoptosis-, and ferroptosis-related genes. Insulin at 50 μg/mL and 100 μg/mL slowed down the proliferation with elevated ion content and GSH/oxidized glutathione (GSSG) in PGCs compared to 10 μg/mL. In addition, insulin activates the PI3K/AKT/mTOR pathway dose dependently. Collectively, this study demonstrates that insulin reduces apoptosis and ferroptosis and enhances cell proliferation in a dose-dependent manner via the PI3K-AKT-mTOR signaling pathway in PGCs, providing a new addition to the theory of the regulatory role of the growth and proliferation of PGC in vitro cultures

    Activity Analysis and Preliminary Inducer Screening of the Chicken DAZL Gene Promoter

    No full text
    This study was aimed at identifying the active control area of chicken DAZL gene core promoter, to screen optimum inducers of the DAZL gene, thus to enhance the differentiation of embryonic stem cells into spermatogonial stem cells. Fragments of chicken DAZL gene promoter were cloned into fluorescent reporter plasmids and transfected into DF-1 cells. Then Dual-Luciferase® Reporter Assay System was used to identify the activity of the DAZL gene under different inducers. Our studies showed that the DAZL core promoter region for the Suqin yellow chicken was −383 to −39 bp. The dual-luciferase® reporter showed that all-trans retinoic acid (ATRA), a retinoic acid receptor alpha agonist (tamibarotene/Am80), or estradiol (E2) could significantly enhance DAZL transcription. The in vitro inductive culture of chicken ESCs demonstrated that, with ATRA treatment, DAZL transcription peaked at 6 days and then decreased slowly; whereas, DAZL transcription was continuous and peaked at 10 days with Am80 treatment. E2 treatment significantly increased DAZL expression after 8 days. All three treatments were associated with the appearance of male germ cell (MGC)-like cells on day 10. These results provide the optimum inducer screening of the DAZL gene and lay the foundation for further screening of compounds that can induce the differentiation of ESCs into MGCs in vitro

    miR-302d Competitively Binding with the lncRNA-341 Targets TLE4 in the Process of SSC Generation

    No full text
    MicroRNAs (miRNAs) are essential factors in the reproductive process of poultry. Here, we found miR-302d is a potential differentiation and negative factor of chicken embryonic stem cells (ESCs) into spermatogonia stem cells (SSCs). The competition mechanism was carried out for the preliminary exploration to determine the relationship among miR-302d, lncRNA-341(interacting with miR-302d), and target gene TLE4. The results showed that lncRNA-341 can competitively bind to miR-302d to decrease the targeted binding of miR-302d and TLE4 which promotes the differentiation of chicken SSCs. Moreover, it is suggested that miR-302d may participate in the Wnt signaling pathway through TLE4
    corecore