16 research outputs found

    The BCL2A1 gene as a pre–T cell receptor–induced regulator of thymocyte survival

    Get PDF
    The pre–T cell receptor (TCR) is expressed early during T cell development and imposes a tight selection for differentiating T cell progenitors. Pre-TCR–expressing cells are selected to survive and differentiate further, whereas pre-TCR− cells are “negatively” selected to die. The mechanisms of pre-TCR–mediated survival are poorly understood. Here, we describe the induction of the antiapoptotic gene BCL2A1 (A1) as a potential mechanism regulating inhibition of pre–T cell death. We characterize in detail the signaling pathway involved in A1 induction and show that A1 expression can induce pre–T cell survival by inhibiting activation of caspase-3. Moreover, we show that in vitro “knockdown” of A1 expression can compromise survival even in the presence of a functional pre-TCR. Finally, we suggest that pre-TCR–induced A1 overexpression can contribute to T cell leukemia in both mice and humans

    Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies

    No full text
    Primary immunodeficiency diseases comprise a group of heterogeneous genetic defects that affect immune system development and/or function. Here we use in vitro differentiation of human induced pluripotent stem cells (iPSCs) generated from patients with different recombination-activating gene 1 (RAG1) mutations to assess T-cell development and T-cell receptor (TCR) V(D)J recombination. RAG1-mutants from severe combined immunodeficient (SCID) patient cells showed a failure to sustain progression beyond the CD3(--)CD4(-)CD8(-)CD7(+)CD5(+)CD38(-)CD31(-/lo)CD45RA(+) stage of T-cell development to reach the CD3(-/+)CD4(+)CD8(+)CD7(+)CD5(+)CD38(+)CD31(+)CD45RA(-) stage. Despite residual mutant RAG1 recombination activity from an Omenn syndrome (OS) patient, similar impaired T-cell differentiation was observed, due to increased single-strand DNA breaks that likely occur due to heterodimers consisting of both an N-terminal truncated and a catalytically dead RAG1. Furthermore, deep-sequencing analysis of TCR-beta (TRB) and TCR-alpha (TRA) rearrangements of CD3(-)CD4(+)CD8(-) immature single-positive and CD3(+)CD4(+)CD8(+) double-positive cells showed severe restriction of repertoire diversity with preferential usage of few Variable, Diversity, and Joining genes, and skewed length distribution of the TRB and TRA complementary determining region 3 sequences from SCID and OS iPSC-derived cells, whereas control iPSCs yielded T-cell progenitors with a broadly diversified repertoire. Finally, no TRA/delta excision circles (TRECs), a marker of TRA/delta locus rearrangements, were detected in SCID and OS-derived T-lineage cells, consistent with a pre-TCR block in T-cell development. This study compares human T-cell development of SCID vs OS patients, and elucidates important differences that help to explain the wide range of immunologic phenotypes that result from different mutations within the same gene of various patients

    TLR ligand-induced type IIFNs affect thymopoiesis

    No full text
    The interactions between TLRs and their ligands have profound immune modulation properties. Attention has focused mostly on the impact of TLR ligands on peripheral innate and adaptive immunity during viral infections, whereas little impact of TLR activation has been shown on thymic development. Here we show that treatment of murine fetal thymic organ cultures (FTOCs) with TLR3 or TLR7 ligands induced rapid expression of IFN-alpha and -beta mRNA, hallmarks of acute and chronic viral infections. This resulted in an early developmental blockade, increased frequencies of apoptotic cells, and decreased proliferation of thymocytes, which led to an immediate decrease in cellularity. FTOCs infected with vesicular stomatitis virus, known to act through TLR7, were similarly affected. Down-regulation of IL-7R alpha-chain expression, together with an increased expression of suppressor of cytokine signaling-1 and a concomitant decreased expression of the transcriptional regulator growth factor independence 1 were observed in TLR ligands or IFN-treated FTOCs. This indicates a role for these pathways in the observed changes in thymocyte development. Taken together, our data demonstrate that TLR activation and ensuing type I IFN production exert a deleterious effect on T cell development. Because TLR ligands are widely used as vaccine adjuvants, their immunomodulatory actions mediated mainly by IFN-alpha suggested by our results should be taken in consideration
    corecore