5 research outputs found
Breakdown of Kinetic Compensation Effect in Physical Desorption
The kinetic compensation effect (KCE), observed in many fields of science, is
the systematic variation in the apparent magnitudes of the Arrhenius parameters
, the energy of activation, and , the preexponential factor, as a
response to perturbations. If, in a series of closely related activated
processes, these parameters exhibit a strong linear correlation, it is expected
that an isokinetic relation will occur, then the rates become the same at a
common compensation temperature . The reality of these two phenomena
continues to be debated as they have not been explicitly demonstrated and their
physical origins remain poorly understood. Using kinetic Monte Carlo
simulations on a model interface, we explore how site and adsorbate
interactions influence the Arrhenius parameters during a typical desorption
process. We find that their transient variations result in a net partial
compensation, due to the variations in the prefactor not being large enough to
completely offset those in , both in plots that exhibit a high degree of
linearity and in curved non-Arrhenius plots. In addition, the observed
isokinetic relation arises due to a transition to a non-interacting regime, and
not due to compensation between and . We expect our results to
provide a deeper insight into the microscopic events that originate
compensation effects and isokinetic relations in our system, and in other
fields where these effects have been reported.Comment: 11 pages, 17 figures, 3 table
Open quantum system dynamics for describing state transfer
In principle a quantum system could be used to simulate another quantum system. The purpose of such a simulation would be to obtain information about problems which are difficult to simulate on a classical computer due to the exponential increase of the Hilbert space with the size of the system, and which cannot be readily measured or controlled in an experiment. A quantum simulator is, however, an open quantum system that will interact with the surrounding environment, which in this case are other particles in the system, and will be implemented using imperfect controls, making it subject to noise. It has been suggested that noise does not need to be controlled to the same extent as it must be for general quantum information processing. However, the effects of noise in quantum simulations are not well understood and how best to treat them in most cases is not known. In the present work we study an existing quantum algorithm for the simulation of the one-dimensional Fano-Anderson model. This algorithm was proposed for a liquid-state NMR device. We examine models of noise in the evolution using different initial states in the original model. We also add interacting spins to simulate realistic situation where an environment of spins is present. We find that states which are entangled with their environment, and sometimes correlated but not necessarily entangled have an evolution which is described by maps which are not completely positive. We discuss the conditions for this to occur and also the implications
Effects of Noise, Correlations and errors in the preparation of initial states in Quantum Simulations
In principle a quantum system could be used to simulate another quantum
system. The purpose of such a simulation would be to obtain information about
problems which cannot be simulated with a classical computer due to the
exponential increase of the Hilbert space with the size of the system and which
cannot be measured or controlled in an actual experiment. The system will
interact with the surrounding environment, with the other particles in the
system and be implemented using imperfect controls making it subject to noise.
It has been suggested that noise does not need to be controlled to the same
extent as it must be for general quantum computing. However the effects of
noise in quantum simulations and how to treat them are not completely
understood. In this paper we study an existing quantum algorithm for the
one-dimensional Fano-Anderson model to be simulated using a liquid-state NMR
device. We calculate the evolution of different initial states in the original
model, and then we add interacting spins to simulate a more realistic
situation. We find that states which are entangled with their environment, and
sometimes correlated but not necessarily entangled have an evolution which is
described by maps which are not completely positive. We discuss the conditions
for this to occur and also the implications.Comment: Revtex 4-1, 14 pages, 21 figures, version 2 has typos corrected and
acknowledgement adde