987 research outputs found

    Geometry of integrable dynamical systems on 2-dimensional surfaces

    Full text link
    This paper is devoted to the problem of classification, up to smooth isomorphisms or up to orbital equivalence, of smooth integrable vector fields on 2-dimensional surfaces, under some nondegeneracy conditions. The main continuous invariants involved in this classification are the left equivalence classes of period or monodromy functions, and the cohomology classes of period cocycles, which can be expressed in terms of Puiseux series. We also study the problem of Hamiltonianization of these integrable vector fields by a compatible symplectic or Poisson structure.Comment: 31 pages, 12 figures, submitted to a special issue of Acta Mathematica Vietnamic

    Foliations of Isonergy Surfaces and Singularities of Curves

    Full text link
    It is well known that changes in the Liouville foliations of the isoenergy surfaces of an integrable system imply that the bifurcation set has singularities at the corresponding energy level. We formulate certain genericity assumptions for two degrees of freedom integrable systems and we prove the opposite statement: the essential critical points of the bifurcation set appear only if the Liouville foliations of the isoenergy surfaces change at the corresponding energy levels. Along the proof, we give full classification of the structure of the isoenergy surfaces near the critical set under our genericity assumptions and we give their complete list using Fomenko graphs. This may be viewed as a step towards completing the Smale program for relating the energy surfaces foliation structure to singularities of the momentum mappings for non-degenerate integrable two degrees of freedom systems.Comment: 30 pages, 19 figure

    Adiabatically coupled systems and fractional monodromy

    Get PDF
    We present a 1-parameter family of systems with fractional monodromy and adiabatic separation of motion. We relate the presence of monodromy to a redistribution of states both in the quantum and semi-quantum spectrum. We show how the fractional monodromy arises from the non diagonal action of the dynamical symmetry of the system and manifests itself as a generic property of an important subclass of adiabatically coupled systems

    Magnetic flows on Sol-manifolds: dynamical and symplectic aspects

    Full text link
    We consider magnetic flows on compact quotients of the 3-dimensional solvable geometry Sol determined by the usual left-invariant metric and the distinguished monopole. We show that these flows have positive Liouville entropy and therefore are never completely integrable. This should be compared with the known fact that the underlying geodesic flow is completely integrable in spite of having positive topological entropy. We also show that for a large class of twisted cotangent bundles of solvable manifolds every compact set is displaceable.Comment: Final version to appear in CMP. Two new remarks have been added as well as some numerical calculations for metric entrop

    The Maslov index and nondegenerate singularities of integrable systems

    Full text link
    We consider integrable Hamiltonian systems in R^{2n} with integrals of motion F = (F_1,...,F_n) in involution. Nondegenerate singularities are critical points of F where rank dF = n-1 and which have definite linear stability. The set of nondegenerate singularities is a codimension-two symplectic submanifold invariant under the flow. We show that the Maslov index of a closed curve is a sum of contributions +/- 2 from the nondegenerate singularities it is encloses, the sign depending on the local orientation and stability at the singularities. For one-freedom systems this corresponds to the well-known formula for the Poincar\'e index of a closed curve as the oriented difference between the number of elliptic and hyperbolic fixed points enclosed. We also obtain a formula for the Liapunov exponent of invariant (n-1)-dimensional tori in the nondegenerate singular set. Examples include rotationally symmetric n-freedom Hamiltonians, while an application to the periodic Toda chain is described in a companion paper.Comment: 27 pages, 1 figure; published versio

    Progression of autosomal-dominant polycystic kidney disease in children1

    Get PDF
    Progression of autosomal-dominant polycystic kidney disease in children.BackgroundAlthough many case reports describe manifestations of autosomal-dominant polycystic kidney disease (ADPKD) in children, no longitudinal studies have examined the natural progression or risk factors for more rapid progression in a large number of children from ADPKD families.MethodsSince 1985, we have studied 312 children from 131 families with a history, a physical examination, blood and urine chemistries, an abdominal ultrasonography, and gene linkage analysis. One hundred fifteen of 185 affected children were studied multiple times for up to 15 years. Renal volumes were determined by ultrasound imaging. Graphs of mean renal volumes according to age were compared between affected and unaffected children, ADPKD children with and without early severe disease, and children with and without high blood pressure.ResultsAffected children had faster renal growth than unaffected children. ADPKD children with severe renal enlargement at a young age continued to experience faster renal growth than those with mild enlargement or normal kidney size for their age, and affected children with high blood pressure had faster renal growth than those with lower blood pressure. Glomerular filtration rate did not decrease in any children except for two with unusually severe early onset disease.ConclusionsThe progression of ADPKD clearly occurs in childhood and manifests as an increase in cyst number and renal size. This study identifies children at risk for rapid renal enlargement who may benefit the most from future therapeutic interventions

    Entropy of geometric structures

    Full text link
    We give a notion of entropy for general gemetric structures, which generalizes well-known notions of topological entropy of vector fields and geometric entropy of foliations, and which can also be applied to singular objects, e.g. singular foliations, singular distributions, and Poisson structures. We show some basic properties for this entropy, including the \emph{additivity property}, analogous to the additivity of Clausius--Boltzmann entropy in physics. In the case of Poisson structures, entropy is a new invariant of dynamical nature, which is related to the transverse structure of the characteristic foliation by symplectic leaves.Comment: The results of this paper were announced in a talk last year in IMPA, Rio (Poisson 2010
    • …
    corecore