16 research outputs found
Protein-Protein Interaction Landscape of Autism Spectrum Disorder (ASD)
Autism Spectrum Disorder (ASD) is a genetically complex and heterogenous neurodevelopmental disorder. As such, much effort has been put into uncovering the risk genes underlying ASD. A recent large-scale whole exome sequencing study focusing on de novo and case-control rare variants has identified 102 high-confidence ASD (hcASD) risk genes with a False Discovery Rate (FDR) ≤ 0.1(Satterstrom et al., 2020). Despite the advances in the discovery of ASD risk genes, we have yet to understand the molecular underpinnings of ASD pathobiology. To understand how hcASD risk genes contribute to ASD phenotypes, it is imperative to utilize integrative networks and systems biology approaches to unravel the molecular pathways connecting these hcASD risk genes. In this dissertation, I show how we used quantitative proteomics to systematically define the physical interaction landscape of proteins encoded by hcASD genes, and how these interactions are disrupted when we introduced de novo missense mutations as observed in the patients. The ASD protein-protein interaction network identifies 1024 unique proteins that interact with at least one of the 102 hcASD risk genes; of note, 82% of the interactions are novel. When we introduce patient-derived missense mutations in 35 out of 102 hcASD risk genes, we observed 133 protein interactions that are more specific to the mutants and 152 proteins that are more specific to the wild-type (WT) proteins. These differential protein interactions can be used to generate hypothesis regarding the molecular underpinnings of ASD etiology. Additionally, I present how we can elucidate biological processes, molecular pathways, and protein complexes from the generated protein-protein interaction network using network biology approaches and functional enrichment analyses, highlighting the convergent pathways that these high confident ASD risk genes may be involved in
Recommended from our members
Mapping the protein–protein and genetic interactions of cancer to guide precision medicine
Massive efforts to sequence cancer genomes have compiled an impressive catalogue of cancer mutations, revealing the recurrent exploitation of a handful of 'hallmark cancer pathways'. However, unraveling how sets of mutated proteins in these and other pathways hijack pro-proliferative signaling networks and dictate therapeutic responsiveness remains challenging. Here, we show that cancer driver protein-protein interactions are enriched for additional cancer drivers, highlighting the power of physical interaction maps to explain known, as well as uncover new, disease-promoting pathway interrelationships. We hypothesize that by systematically mapping the protein-protein and genetic interactions in cancer-thereby creating Cancer Cell Maps-we will create resources against which to contextualize a patient's mutations into perturbed pathways/complexes and thereby specify a matching targeted therapeutic cocktail
Integrative Genomics Analysis Identifies ACVR1B as a Candidate Causal Gene of Emphysema Distribution
Genome-wide association studies (GWAS) have identified multiple associations with emphysema apicobasal distribution (EABD), but the biological functions of these variants are unknown. To characterize the functions of EABD-associated variants, we integrated GWAS results with 1) expression quantitative trait loci (eQTL) from the Genotype Tissue Expression (GTEx) project and subjects in the COPDGene (Genetic Epidemiology of COPD) study and 2) cell type epigenomic marks from the Roadmap Epigenomics project. On the basis of these analyses, we selected a variant near ACVR1B (activin A receptor type 1B) for functional validation. SNPs from 168 loci with P values less than 5 x 10(-5) in the largest GWAS meta-analysis of EABD were analyzed. Eighty-four loci overlapped eQTL, with 12 of these loci showing greater than 80% likelihood of harboring a single, shared GWAS and eQTL causal variant. Seventeen cell types were enriched for overlap between EABD loci and Roadmap Epigenomics marks (permutation P <0.05), with the strongest enrichment observed in CD4(+), CD8(+), and regulatory T cells. We selected a putative causal variant, rs7962469, associated with ACVR1B expression in lung tissue for additional functional investigation, and reporter assays confirmed allele-specific regulatory activity for this variant in human bronchial epithelial and Jurkat immune cell lines. ACVR1B expression levels exhibit a nominally significant association with emphysema distribution. EABD-associated loci are preferentially enriched in regulatory elements of multiple cell types, most notably T-cell subsets. Multiple EABD loci colocalize to regulatory elements that are active across multiple tissues and cell types, and functional analyses confirm the presence of an EABD-associated functional variant that regulates ACVR1B expression, indicating that transforming growth factor-beta signaling plays a role in the EABD phenotype
Nurturing diversity and inclusion in AI in Biomedicine through a virtual summer program for high school students.
Artificial Intelligence (AI) has the power to improve our lives through a wide variety of applications, many of which fall into the healthcare space; however, a lack of diversity is contributing to limitations in how broadly AI can help people. The UCSF AI4ALL program was established in 2019 to address this issue by targeting high school students from underrepresented backgrounds in AI, giving them a chance to learn about AI with a focus on biomedicine, and promoting diversity and inclusion. In 2020, the UCSF AI4ALL three-week program was held entirely online due to the COVID-19 pandemic. Thus, students participated virtually to gain experience with AI, interact with diverse role models in AI, and learn about advancing health through AI. Specifically, they attended lectures in coding and AI, received an in-depth research experience through hands-on projects exploring COVID-19, and engaged in mentoring and personal development sessions with faculty, researchers, industry professionals, and undergraduate and graduate students, many of whom were women and from underrepresented racial and ethnic backgrounds. At the conclusion of the program, the students presented the results of their research projects at the final symposium. Comparison of pre- and post-program survey responses from students demonstrated that after the program, significantly more students were familiar with how to work with data and to evaluate and apply machine learning algorithms. There were also nominally significant increases in the students' knowing people in AI from historically underrepresented groups, feeling confident in discussing AI, and being aware of careers in AI. We found that we were able to engage young students in AI via our online training program and nurture greater diversity in AI. This work can guide AI training programs aspiring to engage and educate students entirely online, and motivate people in AI to strive towards increasing diversity and inclusion in this field
A foundational atlas of autism protein interactions reveals molecular convergence
Summary Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions
Robust Sequence Determinants of α-Synuclein Toxicity in Yeast Implicate Membrane Binding.
Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework