428 research outputs found

    Conditional stability of unstable viscous shocks

    Get PDF
    Continuing a line of investigation initiated by Texier and Zumbrun on dynamics of viscous shock and detonation waves, we show that a linearly unstable Lax-type viscous shock solution of a semilinear strictly parabolic system of conservation laws possesses a translation-invariant center stable manifold within which it is nonlinearly orbitally stable with respect to small L1∩H2L^1\cap H^2 perturbatoins, converging time-asymptotically to a translate of the unperturbed wave. That is, for a shock with pp unstable eigenvalues, we establish conditional stability on a codimension-pp manifold of initial data, with sharp rates of decay in all LpL^p. For p=0p=0, we recover the result of unconditional stability obtained by Howard, Mascia, and Zumbrun

    The refined inviscid stability condition and cellular instability of viscous shock waves

    Full text link
    Combining work of Serre and Zumbrun, Benzoni-Gavage, Serre, and Zumbrun, and Texier and Zumbrun, we propose as a mechanism for the onset of cellular instability of viscous shock and detonation waves in a finite-cross-section duct the violation of the refined planar stability condition of Zumbrun--Serre, a viscous correction of the inviscid planar stability condition of Majda. More precisely, we show for a model problem involving flow in a rectangular duct with artificial periodic boundary conditions that transition to multidimensional instability through violation of the refined stability condition of planar viscous shock waves on the whole space generically implies for a duct of sufficiently large cross-section a cascade of Hopf bifurcations involving more and more complicated cellular instabilities. The refined condition is numerically calculable as described in Benzoni-Gavage--Serre-Zumbrun
    • …
    corecore