11 research outputs found

    Improved Detection of Mycobacterium bovis Infection in Bovine Lymph Node Tissue Using Immunomagnetic Separation (IMS)-Based Methods

    Get PDF
    Immunomagnetic separation (IMS) can selectively isolate and concentrate Mycobacterium bovis cells from lymph node tissue to facilitate subsequent detection by PCR (IMS-PCR) or culture (IMS-MGIT). This study describes application of these novel IMS-based methods to test for M. bovis in a survey of 280 bovine lymph nodes (206 visibly lesioned (VL), 74 non-visibly lesioned (NVL)) collected at slaughter as part of the Northern Ireland bovine TB eradication programme. Their performance was evaluated relative to culture. Overall, 174 (62.1%) lymph node samples tested positive by culture, 162 (57.8%) by IMS-PCR (targeting IS6110), and 191 (68.2%) by IMS-MGIT culture. Twelve (6.9%) of the 174 culture positive lymph node samples were not detected by either of the IMS-based methods. However, an additional 79 M. bovis positive lymph node samples (27 (13.1%) VL and 52 (70.3%) NVL) were detected by the IMS-based methods and not by culture. When low numbers of viable M. bovis are present in lymph nodes (e.g. in NVLs of skin test reactor cattle) decontamination prior to culture may adversely affect viability, leading to false negative culture results. In contrast, IMS specifically captures whole M. bovis cells (live, dead or potentially dormant) which are not subject to any deleterious treatment before detection by PCR or MGIT culture. During this study only 2.7% of NVL lymph nodes tested culture positive, whereas 70.3% of the same samples tested M. bovis positive by the IMS-based tests. Results clearly demonstrate that not only are the IMS-based methods more rapid but they have greater detection sensitivity than the culture approach currently used for the detection of M. bovis infection in cattle. Adoption of the IMS-based methods for lymph node testing would have the potential to improve M. bovis detection in clinical samples

    Spoligotyping and variable number tandem repeat analysis of Mycobacterium bovis isolates from cattle in Brazil

    No full text
    We performed spoligotyping and 12-mycobacterial interspersed repetitive unit-variable number tandem repeats (MIRU-VNTRs) typing to characterise Mycobacterium bovis isolates collected from tissue samples of bovines with lesions suggestive for tuberculosis during slaughter inspection procedures in abattoirs in Brazil. High-quality genotypes were obtained with both procedures for 61 isolates that were obtained from 185 bovine tissue samples and all of these isolates were identified as M. bovis by conventional identification procedures. On the basis of the spoligotyping, 53 isolates were grouped into nine clusters and the remaining eight isolates were unique types, resulting in 17 spoligotypes. The majority of the Brazilian M. bovis isolates displayed spoligotype patterns that have been previously observed in strains isolated from cattle in other countries. MIRU-VNTR typing produced 16 distinct genotypes, with 53 isolates forming eight of the groups, and individual isolates with unique VNTR profiles forming the remaining eight groups. The allelic diversity of each VNTR locus was calculated and only two of the 12-MIRU-VNTR loci presented scores with either a moderate (0.4, MIRU16) or high (0.6, MIRU26) discriminatory index (h). Both typing methods produced similar discriminatory indexes (spoligotyping h = 0.85; MIRU-VNTR h = 0.86) and the combination of the two methods increased the h value to 0.94, resulting in 29 distinct patterns. These results confirm that spoligotyping and VNTR analysis are valuable tools for studying the molecular epidemiology of M. bovis infections in Brazil

    N-acetyl cysteine reverses social isolation rearing induced changes in cortico-striatal monoamines in rats

    Full text link
    Schizophrenia is causally associated with early-life environmental stress, implicating oxidative stress in its pathophysiology. N-acetyl cysteine (NAC), a glutathione precursor and antioxidant, is emerging as a useful agent in the adjunctive treatment of schizophrenia and other psychiatric illnesses. However, its actions on brain monoamine metabolism are unknown. Social isolation rearing (SIR) in rats presents with face, predictive and construct validity for schizophrenia. This study evaluated the dose-dependent effects of NAC (50, 150 and 250 mg/kg/day × 14 days) on SIR- vs. socially reared induced changes in cortico-striatal levels of dopamine (DA), serotonin (5-HT) noradrenaline (NA) and their associated metabolites. SIR induced significant deficits in frontal corticalDA and its metabolites, 3,4-dihydroxyphenylacetic acid (Dopac) and homovanillic acid (HVA), reduced 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), and reduced levels of the NA metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG). In addition, significant elevations in frontal cortical NA and striatal DA, Dopac, HVA, 5-HT, 5-HIAA, NA and MHPG were also observed in SIR rats. NAC at 150 and 250 mg/kg reversed all cortico-striatal DA, Dopac, HVA, 5- HT, 5-HIAA and striatal NA alterations in SIR animals, with 250 mg/kg of NAC also reversing alterations in cortico-striatal MHPG. In conclusion, SIR profoundly alters cortico-striatal DA, 5-HT and NA pathways that parallel observations in schizophrenia, while these changes are dose-dependently reversed or abrogated by sub-chronic NAC treatment. A modulatory action on cortico-striatal monoamines may explain NACs’ therapeutic use in schizophrenia and possibly other psychiatric disorders, where redox dysfunction or oxidative stress is a causal factor
    corecore