6 research outputs found

    Preclinical Testing of Boron-Doped Diamond Electrodes for Root Canal Disinfection—A Series of Preliminary Studies

    Get PDF
    While numerous approaches have meanwhile been described, sufficient disinfection of root canals is still challenging, mostly due to limited access and the porous structure of dentin. Instead of using different rinsing solutions and activated irrigation, the electrolysis of saline using boron-doped diamond (BDD) electrodes thereby producing reactive oxygen species may be an alternative approach. In a first step, experiments using extracted human teeth incubated with multispecies bacterial biofilm were conducted. The charge quantities required for electrochemical disinfection of root canals were determined, which were subsequently applied in an animal trial using an intraoral canine model. It could be shown that also under realistic clinical conditions, predictable disinfection of root canals could be achieved using BDD electrodes. The parameters required are in the range of 5.5 to 7.0 V and 9 to 38 mA, applied for 2.5 to 6.0 min with approximately 5 to 8 mL of saline. The direct generation of disinfective agents inside the root canal seems to be advantageous especially in situations with compromised access and limited canal sizes. The biologic effect with respect to the host reaction on BDD-mediated disinfection is yet to be examined

    Pilot Study on the Use of a Laser-Structured Double Diamond Electrode (DDE) for Biofilm Removal from Dental Implant Surfaces

    Get PDF
    No proper treatment option for peri-implantitis exists yet. Based on previous studies showing the in vitro effectiveness of electrochemical disinfection using boron-doped diamond electrodes, novel double diamond electrodes (DDE) were tested here. Using a ceramic carrier and a laser structuring process, a clinically applicable electrode array was manufactured. Roughened metal discs (n = 24) made from Ti-Zr alloy were exposed to the oral cavities of six volunteers for 24 h in order to generate biofilm. Then, biofilm removal was carried out either using plastic curettes and chlorhexidine digluconate or electrochemical disinfection. In addition, dental implants were contaminated with ex vivo multispecies biofilm and disinfected using DDE treatment. Bacterial growth and the formation of biofilm polymer were determined as outcome measures. Chemo-mechanical treatment could not eliminate bacteria from roughened surfaces, while in most cases, a massive reduction of bacteria and biofilm polymer was observed following DDE treatment. Electrochemical disinfection was charge- and time-dependent and could also not reach complete disinfection in all instances. Implant threads had no negative effect on DDE treatment. Bacteria exhibit varying resistance to electrochemical disinfection with Bacillus subtilis, Neisseria sp., Rothia mucilaginosa, Staphylococcus haemolyticus, and Streptococcus mitis surviving 5 min of DDE application at 6 V. Electrochemical disinfection is promising but requires further optimization with respect to charge quantity and application time in order to achieve disinfection without harming host tissue

    Root Canal Obturation by Electrochemical Precipitation of Calcium Phosphates

    Get PDF
    Achieving adequate disinfection and preventing reinfection is the major goal in endodontic treatment. Variation in canal morphology and open porosity of dentine prevents achieving complete disinfection. Questionable biocompatibility of materials as well as a lack of sealing ability questions the usefulness of current obturation methods. With a novel disinfection approach based on the use of boron-doped diamond (BDD) electrodes having shown promising results it was the goal of this series of experiments to investigate the possibility of BDD-mediated in situ forming of a biocompatible obturation material. A combination of calcium phosphate and maleic acid was used as precursor solution while Ion Chromatography Mass Spectrometry (IC-MS), Raman spectroscopy (RAMAN), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), dye penetration and micro-computed tomography (µCT) were applied for characterizing the precipitate. It was possible to achieve a BDD-mediated precipitation of brushite in a clinically applicable timeframe. However, tight sealing of the canal system based on brushite could not be achieved

    Diamond as Insulation for Conductive Diamond—A Spotted Pattern Design for Miniaturized Disinfection Devices

    No full text
    Boron-doped diamond (BDD) electrodes are well known for the in situ production of strong oxidants. These antimicrobial agents are produced directly from water without the need of storage or stabilization. An in situ production of reactive oxygen species (ROS) used as antimicrobial agents has also been used in recently developed medical applications. Although BDD electrodes also produce ROS during water electrolysis, only a few medical applications have appeared in the literature to date. This is probably due to the difficulties in the miniaturization of BDD electrodes, while maintaining a stable and efficient electrolytic process in order to obtain a clinical applicability. In this attempt, a cannula-based electrode design was achieved by insulating the anodic diamond layer from a cathodic cannula, using a second layer of non-conducting diamond. The undoped diamond (UDD) layer was successfully grown in a spotted pattern, resulting in a perfectly insulated yet still functional BDD layer, which can operate as a miniaturized flow reactor for medical applications. The spotted pattern was achieved by introducing a partial copper layer on top of the BDD layer, which was subsequently removed after growing the undoped diamond layer via etching. The initial analytical observations showed promising results for further chemical and microbial investigations

    Diamond as Insulation for Conductive Diamond : A Spotted Pattern Design for Miniaturized Disinfection Devices

    Get PDF
    Boron-doped diamond (BDD) electrodes are well known for the in situ production of strong oxidants. These antimicrobial agents are produced directly from water without the need of storage or stabilization. An in situ production of reactive oxygen species (ROS) used as antimicrobial agents has also been used in recently developed medical applications. Although BDD electrodes also produce ROS during water electrolysis, only a few medical applications have appeared in the literature to date. This is probably due to the difficulties in the miniaturization of BDD electrodes, while maintaining a stable and efficient electrolytic process in order to obtain a clinical applicability. In this attempt, a cannula-based electrode design was achieved by insulating the anodic diamond layer from a cathodic cannula, using a second layer of non-conducting diamond. The undoped diamond (UDD) layer was successfully grown in a spotted pattern, resulting in a perfectly insulated yet still functional BDD layer, which can operate as a miniaturized flow reactor for medical applications. The spotted pattern was achieved by introducing a partial copper layer on top of the BDD layer, which was subsequently removed after growing the undoped diamond layer via etching. The initial analytical observations showed promising results for further chemical and microbial investigations

    Root Canal Obturation by Electrochemical Precipitation of Calcium Phosphates

    No full text
    Achieving adequate disinfection and preventing reinfection is the major goal in endodontic treatment. Variation in canal morphology and open porosity of dentine prevents achieving complete disinfection. Questionable biocompatibility of materials as well as a lack of sealing ability questions the usefulness of current obturation methods. With a novel disinfection approach based on the use of boron-doped diamond (BDD) electrodes having shown promising results it was the goal of this series of experiments to investigate the possibility of BDD-mediated in situ forming of a biocompatible obturation material. A combination of calcium phosphate and maleic acid was used as precursor solution while Ion Chromatography Mass Spectrometry (IC-MS), Raman spectroscopy (RAMAN), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), dye penetration and micro-computed tomography (µCT) were applied for characterizing the precipitate. It was possible to achieve a BDD-mediated precipitation of brushite in a clinically applicable timeframe. However, tight sealing of the canal system based on brushite could not be achieved
    corecore