5 research outputs found

    Colon phantoms with cancer lesions for endoscopic characterization with optical coherence tomography

    No full text
    International audienceOptical coherence tomography (OCT) is a growing imaging technique for real-time early diagnosis of digestive system diseases. As with other well-established medical imaging modalities, OCT requires validated imaging performance and standardized test methods for performance assessment. A major limitation in the development and testing of new imaging technologies is the lack of models for simultaneous clinical procedure emulation and characterization of healthy and diseased tissues. Currently, the former can be tested in large animal models and the latter can be tested in small animal disease models or excised human biopsy samples. In this study, a 23 cm by 23 cm optical phantom was developed to mimic the thickness and near-infrared optical properties of each anatomical layer of a human colon, as well as the surface topography of colorectal polyps and visual appearance compatible with white light endoscop

    Steerable OCT catheter for real-time assistance during teleoperated endoscopic treatment of colorectal cancer

    No full text
    International audienceWhen detected early, colorectal cancer can be treated with minimally invasive flexible endoscopy. However, since only specialized experts can delineate margins and perform endoscopic resections of lesions, patients still often undergo colon resections. To better assist in the performance of surgical tasks, a robotized flexible interventional endoscope was previously developed, having two additional side channels for surgical instrument. We propose to enhance the imaging capabilities of this device by combining it with optical coherence tomography (OCT). For this purpose, we have developed a new steerable OCT instrument with an outer diameter of 3.5 mm. The steerable instrument is terminated with a 2 cm long transparent sheath to allow three-dimensional OCT imaging using a side-focusing optical probe with two external scanning actuators. The instrument is connected to an OCT imaging system built around the OCT Axsun engine, with a 1310 nm center wavelength swept source laser and 100 kHz A-line rate. Once inserted in one of the side channels of the robotized endoscope, bending, rotation and translation of the steerable OCT instrument can be controlled by a physician using a joystick. Ex vivo and in vivo tests show that the novel, steerable and teleoperated OCT device enhances dexterity, allowing for inspection of the surgical field without the need for changing the position of the main endoscope
    corecore