102 research outputs found

    Probing high pressure properties of single wall carbon nanotubes through fullerene encapsulation

    Get PDF
    The high pressure behavior of bundled 1.35±0.1nm diameter single wall carbon nanotubes (SWNT) filled with C70 fullerenes (usually called peapods) has been investigated by Raman spectroscopy and compared with the corresponding behavior of the nonfilled SWNT. We show experimentally that two reversible pressure-induced transitions take place in the compressed bundle SWNT. The first transition, in the 2–2.5GPa range, is in good correspondence with predictions of the thermodynamic instability of the nanotube circular cross section for the studied tube diameter. An interaction between the fullerenes and the tube walls is then observed at about 3.5GPa, which evidences a progressive deformation of the tube cross section. The second transition takes place at pressures between 10 and 30GPa, and is evidenced by two effects by a strong frequency downshift of the Raman transverse modes and the concomitant disappearance of the fullerenes Raman modes in peapods. The pressure at which the second transition takes place is strongly dependent on the nature of the pressure transmitting medium. We also report irreversible effects at high pressure as the shortening of the tubes, the formation of nanostructures and the disappearance of the C70 Raman signal in some cases. Transmission electron microscopy studies are also reported supporting these transformations

    The Interactions Between Rapeseed Lipoxygenase and Native Polyphenolic Compounds in a Model System

    Get PDF
    The focus of the present research was to study inhibition of lipoxygenase activity by rapeseed native polyphenols and the interactions between those compounds and the enzyme. The enzyme and polyphenolic compounds (polyphenols, phenolic acids) were extracted from rapeseed (Brassica napus) varieties Aviso and PR45DO3. The total phenolic compounds concentration in tested rapeseed was 1,485–1,691 mg/100 g d.m. (dry matter) and the free phenolic acids content in both rapeseed varieties was about 76 Όg/100 g d.m. The isolated proteins showed lipoxygenase activity. Prooxidant properties of phenolic compounds in the presence of lipoxygenase and linoleic acid were observed rather in the case of extracts containing a relatively high concentration of miscellaneous polyphenols. Antioxidant properties were recorded in the case of phenolic acid extracts which contain only 1.4–1.9% of phenolics present in raw phenolic extracts. We propose that the prooxidant effect of phenolic compounds comes from quinone and oxidized polyphenols formation. The observed antioxidant activity of phenolic acid extracts is probably due to their ability to scavenge free radicals formed from linoleic acid. However, reduction of lipoxygenase ferric to ferrous ions, which prevent the activation of the enzyme and inhibited its activity, was also observed

    Molecular wiring of LiMnPO4 (olivine) by ruthenium(II)-bipyridine complexes

    No full text
    LiMnPO4 (olivine) was surface-modified by two different complexes: Ru-bis(4,4'-diethoxycarbonyl-2,2'-bipyridine)(4,4'-dicarboxylate-2,2'-bipyridine) and Ru-bis(4-carboxylic acid-4'-carboxylate-2,2'-bipyridine)(4,4'-dinonyl-2,2'bipyridine). These complexes have redox potentials of 4.45 and 4.25 V vs. Li/Li+, respectively, and are both active for molecular wiring of LiMnPO4. The surface-confined Ru(II)/Ru(III) redox reaction propagates across the monolayer via hole-hopping, allowing a subsequent chemical delithiation of the underneath olivine towards MnPO4. The activity of LiMnPO4 is about half of that of LiFePO4 (olivine) at similar experimental conditions. (C) 2009 Elsevier B.V. All rights reserved

    Novel Synthesis of the TiO2(B) Multilayer Templated Films

    No full text
    TiO2(B) mesoporous thin films were grown in two steps on the F-doped SnO2 conductive glass substrates. In the first step, a small amount of H3PO4, corresponding to 0.15-0.375 wt % P on TiO2 basis, was introduced into concentrated HCl which was subsequently used for hydrolysis of titanium ethoxide. The hydrolyzed colloidal TiO2 Suspension was further mixed with a 1-butanol solution of the amphiphilic triblock copolymer Pluronic P123. The obtained precursor mixture was used for dip coating of FTO substrates. To achieve over 1 mu m thick films, dip coating (followed by a thermal treatment at 350 degrees C/2 h) was repeated several times to produce multilayer films. The films consisted of amorphous TiO2 with small amounts of anatase and TiO2(B). The amorphous part was converted into the TiO2(B) in a simple firing step at 500-550 degrees C. The formation of TiO2(B) phase was accompanied by a significant increase of the film thickness. The films demonstrated unique behavior during the electrochemical lithium insertion that would qualify them for fast battery or electrochromic smart window applications. The efficiency of multiphase TiO2 films in dye sensitized solar cells depends on the composition of individual films: it increases in the series: anatase/ amorphous TiO2 < anatase/TiO2(B) < anatase
    • 

    corecore