3 research outputs found
Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases
Ciliopathies; Photoreceptors; RetinaCiliopatĂas; Fotorreceptores; RetinaCiliopaties; Fotoreceptors; RetinaMutations in the photoreceptor-specific C2orf71 gene (also known as photoreceptor cilium actin regulator protein PCARE) cause autosomal recessive retinitis pigmentosa type 54 and cone-rod dystrophy. No treatments are available for patients with C2orf71 retinal ciliopathies exhibiting a severe clinical phenotype. Our understanding of the disease process and the role of PCARE in the healthy retina significantly limits our capacity to transfer recent technical developments into viable therapy choices. This study summarizes the current understanding of C2orf71-related retinal diseases, including their clinical manifestations and an unclear genotype-phenotype correlation. It discusses molecular and functional studies on the photoreceptor-specific ciliary PCARE, focusing on the photoreceptor cell and its ciliary axoneme. It is proposed that PCARE is an actin-associated protein that interacts with WASF3 to regulate the actin-driven expansion of the ciliary membrane during the development of a new outer segment disk in photoreceptor cells. This review also introduces various cellular and animal models used to model these diseases and provides an overview of potential treatments.This research project was funded by Instituto de Salud Carlos III, grant number PI22/01747
All-trans retinoic acid modulates pigmentation, neuroretinal maturation, and corneal transparency in human multiocular organoids
Ăcido transretinoico; Retina; CĂ©lulas madreĂcid transreitnoic; Retina; CĂšl·lules mareAll-trans retinoic acid; Retina; Stem cellsBackground
All-trans retinoic acid (ATRA) plays an essential role during human eye development, being temporally and spatially adjusted to create gradient concentrations that guide embryonic anterior and posterior axis formation of the eye. Perturbations in ATRA signaling can result in severe ocular developmental diseases. Although it is known that ATRA is essential for correct eye formation, how ATRA influences the different ocular tissues during the embryonic development of the human eye is still not well studied. Here, we investigated the effects of ATRA on the differentiation and the maturation of human ocular tissues using an in vitro model of human-induced pluripotent stem cells-derived multiocular organoids.
Methods
Multiocular organoids, consisting of the retina, retinal pigment epithelium (RPE), and cornea, were cultured in a medium containing low (500 nM) or high (10 ”M) ATRA concentrations for 60 or 90 days. Furthermore, retinal organoids were cultured with taurine and T3 to further study photoreceptor modulation during maturation. Histology, immunochemistry, qPCR, and western blot were used to study gene and protein differential expression between groups.
Results
High ATRA levels promote the transparency of corneal organoids and the neuroretinal development in retinal organoids. However, the same high ATRA levels decreased the pigmentation levels of RPE organoids and, in long-term cultures, inhibited the maturation of photoreceptors. By contrast, low ATRA levels enhanced the pigmentation of RPE organoids, induced the opacity of corneal organoidsâdue to an increase in collagen type IV in the stromaâ and allowed the maturation of photoreceptors in retinal organoids. Moreover, T3 promoted rod photoreceptor maturation, whereas taurine promoted red/green cone photoreceptors.
Conclusion
ATRA can modulate corneal epithelial integrity and transparency, photoreceptor development and maturation, and the pigmentation of RPE cells in a dose-dependent manner. These experiments revealed the high relevance of ATRA during ocular tissue development and its use as a potential new strategy to better modulate the development and maturation of ocular tissue through temporal and spatial control of ATRA signaling.This research project was funded by a grant from ERA-NET EuroNanoMed III-ISCIII (AC19/00080) (CELLUX), and Instituto de Salud Carlos III (PI18/00219). A.D. was supported by ISCIII-FEDER RETICS (Oftared; RD16/0008). H.IM. was supported by EuroNanoMed III-ISCIII (AC19/00080)
All-trans retinoic acid modulates pigmentation, neuroretinal maturation, and corneal transparency in human multiocular organoids
All-trans retinoic acid (ATRA) plays an essential role during human eye development, being temporally and spatially adjusted to create gradient concentrations that guide embryonic anterior and posterior axis formation of the eye. Perturbations in ATRA signaling can result in severe ocular developmental diseases. Although it is known that ATRA is essential for correct eye formation, how ATRA influences the different ocular tissues during the embryonic development of the human eye is still not well studied. Here, we investigated the effects of ATRA on the differentiation and the maturation of human ocular tissues using an in vitro model of human-induced pluripotent stem cells-derived multiocular organoids. Multiocular organoids, consisting of the retina, retinal pigment epithelium (RPE), and cornea, were cultured in a medium containing low (500 nM) or high (10 ”M) ATRA concentrations for 60 or 90 days. Furthermore, retinal organoids were cultured with taurine and T3 to further study photoreceptor modulation during maturation. Histology, immunochemistry, qPCR, and western blot were used to study gene and protein differential expression between groups. High ATRA levels promote the transparency of corneal organoids and the neuroretinal development in retinal organoids. However, the same high ATRA levels decreased the pigmentation levels of RPE organoids and, in long-term cultures, inhibited the maturation of photoreceptors. By contrast, low ATRA levels enhanced the pigmentation of RPE organoids, induced the opacity of corneal organoids-due to an increase in collagen type IV in the stroma- and allowed the maturation of photoreceptors in retinal organoids. Moreover, T3 promoted rod photoreceptor maturation, whereas taurine promoted red/green cone photoreceptors. ATRA can modulate corneal epithelial integrity and transparency, photoreceptor development and maturation, and the pigmentation of RPE cells in a dose-dependent manner. These experiments revealed the high relevance of ATRA during ocular tissue development and its use as a potential new strategy to better modulate the development and maturation of ocular tissue through temporal and spatial control of ATRA signaling. The online version contains supplementary material available at 10.1186/s13287-022-03053-1