18 research outputs found

    Enhancing Visually-Rich Document Understanding via Layout Structure Modeling

    Full text link
    In recent years, the use of multi-modal pre-trained Transformers has led to significant advancements in visually-rich document understanding. However, existing models have mainly focused on features such as text and vision while neglecting the importance of layout relationship between text nodes. In this paper, we propose GraphLayoutLM, a novel document understanding model that leverages the modeling of layout structure graph to inject document layout knowledge into the model. GraphLayoutLM utilizes a graph reordering algorithm to adjust the text sequence based on the graph structure. Additionally, our model uses a layout-aware multi-head self-attention layer to learn document layout knowledge. The proposed model enables the understanding of the spatial arrangement of text elements, improving document comprehension. We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results among these datasets. Our experimental results demonstrate that our proposed method provides a significant improvement over existing approaches and showcases the importance of incorporating layout information into document understanding models. We also conduct an ablation study to investigate the contribution of each component of our model. The results show that both the graph reordering algorithm and the layout-aware multi-head self-attention layer play a crucial role in achieving the best performance

    Valproic acid counteracts polycyclic aromatic hydrocarbons (PAHs)-induced tumorigenic effects by regulating the polarization of macrophages

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are common persistent organic pollutants that are carcinogenic, teratogenic and mutagenic, causing a variety of harm to human health. In this study, we investigated the mechanism of how valproic acid (VPA) interferes with the carcinogenesis of PAHs protect normal tissues via the regulation of macrophages’ function. Using the established model of transformed malignant breast cancer by 7,12-dimethylbenz[a]anthracene (DMBA), a representative PAH carcinogen, we discovered VPA induces the polarization of macrophages toward the M1 phenotype in the tumor tissues, facilitates the expression of pro inflammatory cytokines such as IFN-γ, IL-12 and TNF-α, activates CD8+ T cells to secret Granzyme B thus to promote the apoptosis of tumor cells and suppresses the viability of vascular endothelial cells in tissue stroma of tumor. Surprisingly, VPA selectively induces macrophages to polarize towards the M2 phenotype in normal tissues and promotes the expression of anti-inflammatory cytokines such as IL-10 to enhance cell proliferation. Additionally, at the cellular level, VPA can directly regulate the polarization of macrophages to affect the growth of vascular endothelial cells by simulating the living conditions of tumor and normal cells. Collectively, VPA exerts an interventional effect on tumor growth and a protective effect on normal tissues by regulation of selective macrophages’ polarization in their microenvironment

    The valproate mediates radio-bidirectional regulation through RFWD3-dependent ubiquitination on Rad51

    Get PDF
    Ionizing radiation (IR) can induce DNA double-strand breaks (DSBs) in tumor cells during radiotherapy (RT), but the efficiency of RT is limited because of the toxicity to normal cells. Locating an adjuvant treatment to alleviate damage in normal cells while sensitizing tumor cells to IR has attracted much attention. Here, using the 7,12-dimethylbenz[α]anthracene (DMBA)-induced malignant transformed MCF10A cells, we found that valproate (VPA), a histone deacetylase inhibitor (HDACi), radiosensitized transformed cells while alleviated IR-induced damage in normal cells at a safe dose (0.5 mM). We further demonstrated the decrease of homologous recombination (HR)-associated Rad51 in the transformed cells was related to the increase of its ubiquitination regulated by E3 ligase RFWD3 for the radiosensitization, which was opposite to normal cells, indicating that RFWD3-dependent ubiquitination on Rad51 was involved in the VPA-mediated radio-bidirectional effect. Through DMBA-transformed breast cancer rat model, VPA at 200 mg/kg radiosensitized tumor tissue cells by increasing RFWD3 and inhibited Rad51, while radioprotected normal tissue cells by decreasing RFWD3 and enhanced Rad51. In addition, we found high-level Rad51 was associated with tumorigenesis and poor prognosis in breast cancer patients. Our findings uncovered RFWD3-dependent Rad51 ubiquitination was the novel mechanism of VPA-mediated radio-bidirectional effect, VPA is a potential adjuvant treatment for tumor RT

    [In Press] Valproic acid triggers radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment in a rat model of breast cancer

    No full text
    An abscopal effect occurs when localized radiotherapy causes the regression of tumors distant from the irradiated site. However, such a clinically detectable abscopal effect from radiotherapy alone is rare. This study investigated whether valproic acid ([VPA], a histone deacetylase inhibitor [HDACi]) treatment can stimulate radiation-induced abscopal effect. We used 7,12-dimethylbenz[a]anthracene, a typical environmental carcinogen, to establish a rat model with multiple breast tumors. Only one tumor received 8 Gy fractionated doses of X-rays (2 Gy daily fractions over four days) and 200 mg/kg VPA was administered intraperitoneally. We monitored the growth of both irradiated and unirradiated tumors after treatments. The unirradiated tumor was collected for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC) (CD8, Granzyme B, Cleaved Caspase-3, BrdU, Ki67, F4/80 and CD68), double immunofluorescence (F4/80 and CD86), Western blot (Cleaved Caspase-3) and qRT-PCR (CD86, CD163, IL-1β, IL-6, IL-12, IL-23, IL-10, TGF-β) analysis. We found ionizing radiation (IR) + VPA treatment inhibited both irradiated and unirradiated tumor growth as compared to IR alone. Such observe abscopal effect was mediated by the recruitment of activated CD8+ T cells into the unirradiated tumor sites, which released Granzyme B to cause tumor cell apoptosis. Furthermore, IR + VPA treatment led to macrophages infiltration into the unirradiated tumor sites and polarization to M1 phenotype, resulted in increased levels of pro-inflammatory cytokines such as IL-1β and IL-12, and decreased levels of anti-inflammatory cytokines such as IL-10 and TGF-β. Our data supports the proposition that VPA may be a potential therapeutic candidate to trigger radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment

    2-hexyl-4-pentylenic acid (HPTA) stimulates the radiotherapy-induced abscopal effect on distal tumor through polarization of tumor-associated macrophages

    No full text
    Objective: The aim of this study was to explore the effects of 2-hexyl-4-pentylenic acid (HPTA) in combination with radiotherapy (RT) on distant unirradiated breast tumors. Methods: Using a rat model of chemical carcinogen (7,12-dimethylbenz[a]anthracene,DMBA)-induced breast cancer, tumor volume was monitored and treatment response was evaluated by performing HE staining, immunohistochemistry, immunofluorescence, qRT-PCR, and western blot analyses. Results: The results demonstrated that HPTA in combination with RT significantly delayed the growth of distant, unirradiated breast tumors. The mechanism of action included tumor-associated macrophage (TAM) infiltration into distant tumor tissues, M1 polarization, and inhibition of tumor angiogenesis by IFN-γ. Conclusion: The results suggest that the combination of HPTA with RT has an abscopal effect on distant tumors via M1-polarized TAMs, and HPTA may be considered as a new therapeutic for amplifying the efficacy of local RT for non-targeted breast tumors

    Valproic acid regulates HR and cell cycle through MUS81-pRPA2 pathway in response to hydroxyurea

    Get PDF
    Breast cancer is the primary problem threatening women’s health. The combined application of valproic acid (VPA) and hydroxyurea (HU) has a synergistic effect on killing breast cancer cells, but the molecular mechanism remains elusive. Replication protein A2 phosphorylation (pRPA2), is essential for homologous recombination (HR) repair and cell cycle. Here we showed that in response to HU, the VPA significantly decreased the tumor cells survival, and promoted S-phase slippage, which was associated with the decrease of pCHK1 and WEE1/pCDK1-mediated checkpoint kinases phosphorylation pathway and inhibited pRPA2/Rad51-mediated HR repair pathway; the mutation of pRPA2 significantly diminished the above effect, indicating that VPA-caused HU sensitization was pRPA2 dependent. It was further found that VPA and HU combination treatment also resulted in the decrease of endonuclease MUS81. After MUS81 elimination, not only the level of pRPA2 was abolished in response to HU treatment, but also VPA-caused HU sensitization was significantly down-regulated through pRPA2-mediated checkpoint kinases phosphorylation and HR repair pathways. In addition, the VPA altered the tumor microenvironment and reduced tumor burden by recruiting macrophages to tumor sites; the Kaplan-Meier analysis showed that patients with high pRPA2 expression had significantly worse survival. Overall, our findings demonstrated that VPA influences HR repair and cell cycle through down-regulating MUS81-pRPA2 pathway in response to HU treatment

    2-hexyl-4-pentynoic acid, a potential therapeutic for breast carcinoma by influencing RPA2 hyperphosphorylation-mediated DNA repair

    No full text
    Breast carcinoma is one of the most common malignancies in women. Previous studies have reported that 500 μM valproic acid can sensitize breast tumor cells to the anti-neoplastic agent hydroxyurea. However, the dose requirements for valproic acid is highly variable due to the wide inter-individuals clinical characteristics. High therapeutic dose of valproic acid required to induce anti-tumor activity in solid tumor was associated with increased adverse effects. There are attempts to locate suitably high-efficient low-toxicity valproic acid derivatives. We demonstrated that lower dose of 2-hexyl-4-pentynoic acid (HPTA; 15 μM) has similar effects as 500 μM VPA in inhibiting breast cancer cell growth and sensitizing the tumor cells to hydroxyurea on MCF7 cells, EUFA423 cells, MCF7 cells with defective RPA2-p gene and primary culture cells derived from tissue-transformed breast tumor cells. We discovered HPTA resulted in more DNA double-strand breaks, the homologous recombination was inhibited through the interference of the hyperphosphorylation of replication protein A2 and recombinase Rad51. Our data postulate that HPTA may be a potential novel sensitizer to hydroxyurea in the treatment of breast carcinoma

    [In Press] HDAC inhibitor HPTA initiates anti-tumor response by CXCL9/10-recruited CXCR3+CD4+T cells against PAHs carcinogenicity

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) exposure in food is closely associated with the occurrence and development of breast cancer, which may attribute to altered immunotoxicity and immune regulation. Currently, cancer immunotherapy aims to promote tumor-specific T cell responses, especially CD4+T helper cells (Th) for anti-tumor immunity. The histone deacetylase inhibitors (HDACis) are found to exert an anti-tumor effect by reshaping the tumor immune microenvironment, but the immune regulatory mechanism of HDACis in PAHs-induced breast tumor remains elusive. Here, using established breast cancer models induced by 7,12-dimethylbenz[a]anthracene (DMBA), a potent carcinogenic agent of PAH, the novel HDACi, 2-hexyl-4-pentylene acid (HPTA) exhibited anti-tumor effect by activating T lymphocytes immune function. HPTA recruited CXCR3+CD4+T cells into chemokines CXCL9/10-enriched tumor sites, the increased secretion of CXCL9/10 was regulated by the NF-κB-mediated pathway. Furthermore, HPTA promoted Th1 differentiation and assisted cytotoxic CD8+T cells in the elimination of breast cancer cells. These findings support the proposition of HPTA as a potential therapeutic in the treatment of PAHs-induced carcinogenicity
    corecore