134 research outputs found

    Antibiotics as a silent driver of climate change? A case study investigating methane production in freshwater sediments

    Get PDF
    Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2) and is inter alia produced in natural freshwater ecosystems. Given the rise in CH4 emissions from natural sources, researchers are investigating environmental factors and climate change feedbacks to explain this increment. Despite being omnipresent in freshwaters, knowledge on the influence of chemical stressors of anthropogenic origin (e.g., antibiotics) on methanogenesis is lacking. To address this knowledge gap, we incubated freshwater sediment under anaerobic conditions with a mixture of five antibiotics at four levels (from 0 to 5000 mu g/L) for 42 days. Weekly measurements of CH4 and CO2 in the headspace, as well as their compound-specific delta C-13, showed that the CH4 production rate was increased by up to 94% at 5000 mu g/L and up to 29% at field-relevant concentrations (i.e., 50 mu g/L). Metabarcoding of the archaeal and eubacterial 16S rRNA gene showed that effects of antibiotics on bacterial community level (i.e., species composition) may partially explain the observed differences in CH4 production rates. Despite the complications of transferring experimental CH4 production rates to realistic field conditions, the study indicated that chemical stressors contribute to the emissions of greenhouse gases by affecting the methanogenesis in freshwaters

    Similar recovery time of microbial functions from fungicide stress across biogeographical regions

    Get PDF
    Abstract Determining whether the structural and functional stress responses of communities are similar across space and time is paramount for forecasting and extrapolating the consequences of anthropogenic pressures on ecosystems and their services. Stream ecosystems are under high anthropogenic pressure; however, studies have only examined the response of stream communities across large scales over multiple generations. We studied the responses of leaf-associated microbial communities in streams within three European biogeographical regions to chemical stress in a microcosm experiment with multiple cycles of fungicide pollution and resource colonisation. Fungal community composition and the ecosystem function leaf decomposition were measured as response variables. Microbial leaf decomposition showed similar recovery times under environmental levels of fungicide exposure across regions. Initially, the decomposition declined (between 19 and 53%) under fungicide stress and recovered to control levels during the third cycle of pollution and colonisation. Although community composition and its stress response varied between regions, this suggests similar functional community adaptation towards fungicide stress over time. Genetic, epigenetic and physiological adaptations, as well as species turnover, may have contributed to community adaptation but further studies are required to determine if and to which extent these mechanisms are operating. Overall, our findings provide the first evidence of a similar functional response of microbial leaf decomposition to chemical stress across space and time

    Effects of salinity on leaf breakdown: dryland salinity versus salinity from a coalmine

    Get PDF
    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems’ integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50\ua0μS/cm to 11,000\ua0μS/cm) and coalmine-induced (100\ua0μS/cm to 2400\ua0μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000\ua0μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50\ua0μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500\ua0μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny

    A new simplified comorbidity score as a prognostic factor in non-small-cell lung cancer patients: description and comparison with the Charlson's index

    Get PDF
    Treatment of non-small-cell lung cancer (NSCLC) might take into account comorbidities as an important variable. The aim of this study was to generate a new simplified comorbidity score (SCS) and to determine whether or not it improves the possibility of predicting prognosis of NSCLC patients. A two-step methodology was used. Step 1: An SCS was developed and its prognostic value was compared with classical prognostic determinants in the outcome of 735 previously untreated NSCLC patients. Step 2: the SCS reliability as a prognostic determinant was tested in a different population of 136 prospectively accrued NSCLC patients with a formal comparison between SCS and the classical Charlson comorbidity index (CCI). Prognosis was analysed using both univariate and multivariate (Cox model) statistics. The SCS summarised the following variables: tobacco consumption, diabetes mellitus and renal insufficiency (respective weightings 7, 5 and 4), respiratory, neoplastic and cardiovascular comorbidities and alcoholism (weighting=1 for each item). In step 1, aside from classical variables such as age, stage of the disease and performance status, SCS was a statistically significant prognostic variable in univariate analyses. In the Cox model weight loss, stage grouping, performance status and SCS were independent determinants of a poor outcome. There was a trend towards statistical significance for age (P=0.08) and leucocytes count (P=0.06). In Step 2, both SCS and well-known prognostic variables were found as significant determinants in univariate analyses. There was a trend towards a negative prognostic effect for CCI. In multivariate analysis, stage grouping, performance status, histology, leucocytes, lymphocytes, lactate dehydrogenase, CYFRA 21-1 and SCS were independent determinants of a poor prognosis. CCI was removed from the Cox model. In conclusion, the SCS, constructed as an independent prognostic factor in a large NSCLC patient population, is validated in another prospective population and appears more informative than the CCI in predicting NSCLC patient outcome

    Chronic effects of the strobilurin fungicide azoxystrobin in the leaf shredder Gammarus fossarum (Crustacea; Amphipoda) via two effect pathways

    Get PDF
    Fungicides pose a risk for crustacean leaf shredders serving as key-stone species for leaf litter breakdown in detritus-based stream ecosystems. However, little is known about the impact of strobilurin fungicides on shredders, even though they are presumed to be the most hazardous fungicide class for aquafauna. Therefore, we assessed the impact of the strobilurin azoxystrobin (AZO) on the survival, energy processing (leaf consumption and feces production), somatic growth (growth rate and molting activity), and energy reserves (neutral lipid fatty and amino acids) of the amphipod crustacean Gammarus fossarum via waterborne exposure and food quality mediated (through the impact of leaf colonizing aquatic microorganisms) and thus indirect effects using 2 x 2-factorial experiments over 24 days. In a first bioassay with 30 mu g AZO/L, waterborne exposure substantially reduced survival, energy processing and affected molting activity of gammarids, while no effects were observed via the dietary pathway. Furthermore, a negative growth rate (indicating a body mass loss in gammarids) was induced by waterborne exposure, which cannot be explained by a loss in neutral lipid fatty and amino acids. These energy reserves were increased indicating a disruption of the energy metabolism in G. fossarum caused by AZO. Contrary to the first bioassay, no waterborne AZO effects were observed during a second experiment with 15 mu g AZO/L. However, an altered energy processing was determined in gammarids fed with leaves microbially colonized in the presence of AZO, which was probably caused by fungicide-induced effects on the microbial decomposition efficiency ultimately resulting in a lower food quality. The results of the present study show that diet-related strobilurin effects can occur at concentrations below those inducing waterborne toxicity. However, the latter seems to be more relevant at higher fungicide concentrations
    • …
    corecore