9 research outputs found

    Occurrence of SARS-CoV-2 viremia is associated with genetic variants of genes related to COVID-19 pathogenesis

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si lo hubiere, y los autores pertenecientes a la UAMSARS-CoV-2 viral load has been related to COVID-19 severity. The main aim of this study was to evaluate the relationship between SARS-CoV-2 viremia and SNPs in genes previously studied by our group as predictors of COVID-19 severity. Materials and methods: Retrospective observational study including 340 patients hospitalized for COVID-19 in the University Hospital La Princesa between March 2020 and December 2021, with at least one viremia determination. Positive viremia was considered when viral load was above the quantifiable threshold (20 copies/ml). A total of 38 SNPs were genotyped. To study their association with viremia a multivariate logistic regression was performed. Results: The mean age of the studied population was 64.5 years (SD 16.6), 60.9% patients were male and 79.4% white non-Hispanic. Only 126 patients (37.1%) had at least one positive viremia. After adjustment by confounders, the presence of the minor alleles of rs2071746 (HMOX1; T/T genotype OR 9.9 p < 0.0001), rs78958998 (probably associated with SERPING1 expression; A/T genotype OR 2.3, p = 0.04 and T/T genotype OR 12.9, p < 0.0001), and rs713400 (eQTL for TMPRSS2; C/T + T/T genotype OR 1.86, p = 0.10) were associated with higher risk of viremia, whereas the minor alleles of rs11052877 (CD69; A/G genotype OR 0.5, p = 0.04 and G/G genotype OR 0.3, p = 0.01), rs2660 (OAS1; A/G genotype OR 0.6, p = 0.08), rs896 (VIPR1; T/T genotype OR 0.4, p = 0.02) and rs33980500 (TRAF3IP2; C/T + T/T genotype OR 0.3, p = 0.01) were associated with lower risk of viremia. Conclusion: Genetic variants in HMOX1 (rs2071746), SERPING1 (rs78958998), TMPRSS2 (rs713400), CD69 (rs11052877), TRAF3IP2 (rs33980500), OAS1 (rs2660) and VIPR1 (rs896) could explain heterogeneity in SARS-CoV-2 viremia in our populatio

    Role of pharmacogenetics in the treatment of acute myeloid leukemia: systematic review and future perspectives

    Full text link
    Acute myeloid leukemia (AML) is a heterogeneous disease characterized by remarkable toxicity and great variability in response to treatment. Plenteous pharmacogenetic studies have already been published for classical therapies, such as cytarabine or anthracyclines, but such studies remain scarce for newer drugs. There is evidence of the relevance of polymorphisms in response to treatment, although most studies have limitations in terms of cohort size or standardization of results. The different responses associated with genetic variability include both increased drug efficacy and toxicity and decreased response or resistance to treatment. A broad pharmacogenetic understanding may be useful in the design of dosing strategies and treatment guidelines. The aim of this study is to perform a review of the available publications and evidence related to the pharmacogenetics of AML, compiling those studies that may be useful in optimizing drug administrationM.S.R. research was supported by Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Science and Innovation, through the Sara Borrell Program (CD21/00022). P.Z. contract with CIBERehd is financed by the “Infraestructura de Medicina de Precisión asociada a la Ciencia y Tecnología (IMPaCT, IMP/00009

    Population pharmacokinetic modelling of imatinib in healthy subjects receiving a single dose of 400 mg

    Full text link
    Purpose: Imatinib is indicated for treatment of CML, GIST, etc. The population pharmacokinetics (popPK) of imatinib in patients under long-term treatment are reported in literature. Data obtained from bioequivalence trials for healthy subjects were used to evaluate the influence of demographic and pharmacogenetic factors on imatinib pharmacokinetics (PK) in a collective without concurrent drugs, organ dysfunction, inflammation etc. In addition, the differences in PK between the healthy subjects and a patient cohort was examined to identify possible disease effects. Methods: 26 volunteers were administered orally with single dose of 400 mg imatinib. 16–19 plasma samples per volunteer were collected from 0.5 up to 72 h post-dose. The popPK was built and post hoc estimates were compared with previously published PK parameters evaluated by non-compartmental analysis in the same cohort. The predictivity of the model for data collected from 40 patients with gastrointestinal stromal tumors at steady state was evaluated. Results: The popPK was best described by a two-compartment transit model with first-order elimination. No significant covariates were identified, probably due to the small cohort and the narrow range of demographic covariates; CYP3A5 phenotypes appeared to have some influence on the clearance of imatinib. Good agreement between non-compartment and popPK analyses was observed with the differences of the geometric means/ median of PK estimates below 10%. The model indicated lower clearance for patients compared to healthy volunteers (p value < 0.01). Conclusion: The two-compartment transit model adequately describes the absorption and distribution of imatinib in healthy volunteers. For patients, a lower clearance of imatinib compared to healthy volunteer was estimated by the model. The model can be applied for dose individualization based on trough concentrations assuming no significant differences in absorption between patients and healthy volunteersThis work was part of the master these of Yi-Han Chien. There was no funding for this work. P. Zubiaur’s contract with CIBERehd is fnanced by the “Infraestructura de Medicina de Precisión asociada a la Ciencia y Tecnología (IMPaCT, IMP/00009)”, Instituto de Salud Carlos III (ISCIII

    Impact of CYP2C:TG Haplotype on CYP2C19 substrates clearance in vivo, protein content, and in vitro activity

    Full text link
    A novel haplotype composed of two non-coding variants, CYP2C18 NM_000772.3:c.*31T (rs2860840) and NM_000772.2:c.819+2182G (rs11188059), referred to as “CYP2C:TG,” was recently associated with ultrarapid metabolism of various CYP2C19 substrates. As the underlying mechanism and clinical relevance of this effect remain uncertain, we analyzed existing in vivo and in vitro data to determine the magnitude of the CYP2C:TG haplotype effect. We assessed variability in pharmacokinetics of CYP2C19 substrates, including citalopram, sertraline, voriconazole, omeprazole, pantoprazole, and rabeprazole in 222 healthy volunteers receiving one of these six drugs. We also determined its impact on CYP2C8, CYP2C9, CYP2C18, and CYP2C19 protein abundance in 135 human liver tissue samples, and on CYP2C18/CYP2C19 activity in vitro using N-desmethyl atomoxetine formation. No effects were observed according to CYP2C:TG haplotype or to CYP2C19*1+TG alleles (i.e., CYP2C19 alleles containing the CYP2C:TG haplotype). In contrast, CYP2C19 intermediate (e.g., CYP2C19*1/*2) and poor metabolizers (e.g., CYP2C19*2/*2) showed significantly higher exposure in vivo, lower CYP2C19 protein abundance in human liver microsomes, and lower activity in vitro compared with normal, rapid (i.e., CYP2C19*1/*17), and ultrarapid metabolizers (i.e., CYP2C19*17/*17). Moreover, a tendency toward lower exposure was observed in ultrarapid metabolizers compared with rapid metabolizers and normal metabolizers. Furthermore, when the CYP2C19*17 allele was present, CYP2C18 protein abundance was increased suggesting that genetic variation in CYP2C19 may be relevant to the overall metabolism of certain drugs by regulating not only its expression levels, but also those of CYP2C18. Considering all available data, we conclude that there is insufficient evidence supporting clinical CYP2C:TG testing to inform drug therapyP.S.-C. is financed by Universidad Autónoma de Madrid (FPIUAM, 2021). P.Z. is financed by Universidad Autónoma de Madrid, Margarita Salas contract, grants for the requalification of the Spanish university system. A.R.-L. and E.G.-I. contracts are financed by Programa Investigo (NextGenerationEU funds of the Recovery and Resilience Facility), fellowship numbers 2022-C23.I01.P03. S0020–0000031 and 09-PIN1-00015.6/2022. Human liver tissue samples were obtained through the Liver Tissue Cell Distribution System, Minneapolis, MN, and Pittsburgh, PA, which was funded by NIH Contract #HHSN276201200017C. The proteomics part of the work was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) Grant R01.HD08129

    Identification of transporter polymorphisms influencing metformin pharmacokinetics in healthy volunteers

    Full text link
    For patients with type 2 diabetes, metformin is the most often recommended drug. However, there are substantial individual differences in the pharmacological response to metformin. To investigate the effect of transporter polymorphisms on metformin pharmacokinetics in an environment free of confounding variables, we conducted our study on healthy participants. This is the first investigation to consider demographic characteristics alongside all transporters involved in metformin distribution. Pharmacokinetic parameters of metformin were found to be affected by age, sex, ethnicity, and several polymorphisms. Age and SLC22A4 and SLC47A2 polymorphisms affected the area under the concentration-time curve (AUC). However, after adjusting for dose-to-weight ratio (dW), sex, age, and ethnicity, along with SLC22A3 and SLC22A4, influenced AUC. The maximum concentration was affected by age and SLC22A1, but after adjusting for dW, it was affected by sex, age, ethnicity, ABCG2, and SLC22A4. The time to reach the maximum concentration was influenced by sex, like half-life, which was also affected by SLC22A3. The volume of distribution and clearance was affected by sex, age, ethnicity and SLC22A3. Alternatively, the pharmacokinetics of metformin was unaffected by polymorphisms in ABCB1, SLC2A2, SLC22A2, or SLC47A1. Therefore, our study demonstrates that a multifactorial approach to all patient characteristics is necessary for better individualizationThe project was financed by the Regional Health Management of Castilla y León (GRS 2432/A/21) and partially by Fundación Burgos por la Investigación de la Salud (FBIS). M.S.R. research is supported by Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Science and Innovation, through the Sara Borrell Program (CD21/00022). G.V.G. is cofinanced by Instituto de Salud Carlos III (ISCIII) and the European Social Fund (PFIS predoctoral grant, number FI20/00090). M.N.G. is financed by the ICI20/00131 grant, Acción Estratégica en Salud 2017–2020, ISCIII. P.Z. is financed by Universidad Autónoma de Madrid, Margarita Salas contract, grants for the requalification of the Spanish university system. The MassArray genotyping service was carried out at the Spanish genotyping center–Centro Español de Genotipado CEGEN-PRB3-ISCIII, which is supported by grant PT17/0019 of the PE I+D+i 2013–2016, funded by ISCIII and European Regional Development Fund ERD

    Genetic variation in CYP2D6 and SLC22A1 affects amlodipine pharmacokinetics and safety

    Full text link
    Amlodipine is an antihypertensive drug with unknown pharmacogenetic biomarkers. This research is a candidate gene study that looked for associations between amlodipine pharmacokinetics and safety and pharmacogenes. Pharmacokinetic and safety data were taken from 160 volunteers from eight bioequivalence trials. In the exploratory step, 70 volunteers were genotyped for 44 polymorphisms in different pharmacogenes. CYP2D6 poor metabolizers (PMs) showed higher half-life (t1/2) (univariate p-value (puv) = 0.039, multivariate p-value (pmv) = 0.013, β = −5.31, R2 = 0.176) compared to ultrarapid (UMs), normal (NMs) and intermediate metabolizers (IMs). SLC22A1 rs34059508 G/A genotype was associated with higher dose/weight-corrected area under the curve (AUC72/DW) (puv = 0.025; pmv = 0.026, β = 578.90, R2 = 0.060) compared to the G/G genotype. In the confirmatory step, the cohort was increased to 160 volunteers, who were genotyped for CYP2D6, SLC22A1 and CYP3A4. In addition to the previous associations, CYP2D6 UMs showed a lower AUC72/DW (puv = 0.046, pmv = 0.049, β = −68.80, R2 = 0.073) compared to NMs, IMs and PMs and the SLC22A1 rs34059508 G/A genotype was associated with thoracic pain (puv = 0.038) and dizziness (puv = 0.038, pmv = 0.014, log OR = 10.975). To our knowledge, this is the first work to report a strong relationship between amlodipine and CYP2D6 and SLC22A1. Further research is needed to gather more evidence before its application in clinical practic

    NAT2 phenotype alters pharmacokinetics of rivaroxaban in healthy volunteers

    Full text link
    Rivaroxaban is a direct inhibitor of factor Xa, a member of direct oral anticoagulant group of drugs (DOACs). Despite being a widely extended alternative to vitamin K antagonists (i.e., acenocoumarol, warfarin) the interindividual variability of DOACs is significant, and may be related to adverse drug reaction occurrence or drug inefficacy, namely hemorrhagic or thromboembolic events. Since there is not a consistent analytic practice to monitor the anticoagulant activity of DOACs, previously reported polymorphisms in genes coding for proteins responsible for the activation, transport, or metabolism of DOACs were studied. The study population comprised 60 healthy volunteers, who completed two randomized, crossover bioequivalence clinical trials between two different rivaroxaban formulations. The effect of food, sex, biogeographical origin and 55 variants (8 phenotypes and 47 single nucleotide polymorphisms) in drug metabolizing enzyme genes (such as CYP2D6, CYP2C9, NAT2) and transporters (namely, ABCB1, ABCG2) on rivaroxaban pharmacokinetics was tested. Individuals dosed under fasting conditions presented lower tmax (2.21 h vs 2.88 h, β = 1.19, R2 =0.342, p = 0.012) compared to fed volunteers. NAT2 slow acetylators presented higher AUC∞ corrected by dose/weight (AUC∞/DW; 8243.90 vs 7698.20 and 7161.25 h*ng*mg /ml*kg, β = 0.154, R2 =0.250, p = 0.044), higher Cmax/DW (1070.99 vs 834.81 and 803.36 ng*mg /ml*kg, β = 0.245, R2 =0.320, p = 0.002), and lower tmax (2.63 vs 3.19 and 4.15 h, β = − 0.346, R2 =0.282, p = 0.047) than NAT2 rapid and intermediate acetylators. No other association was statistically significant. Thus, slow NAT2 appear to have altered rivaroxaban pharmacokinetics, increasing AUC∞ and Cmax. Nonetheless, further research should be conducted to verify NAT2 involvement on rivaroxaban pharmacokinetics and to determine its clinical significanceGonzalo Villapalos-García was co-financed by Instituto de Salud Carlos III (ISCIII) and the European Social Fund (PFIS predoctoral grant, number FI20/00090). Marcos Navares-Gomez ´ was financed by the ICI20/00131 grant, Accion ´ Estrat´egica en Salud 2017–2020, ISCIII. Pablo Zubiaur is financed by Universidad Autonoma ´ de Madrid, Margarita Salas contract, grants for the requalification of the Spanish university system. Paula Soria-Chacartegui is financed by Universidad Autonoma ´ de Madrid (FPI-UAM, 2021). This study was co-financed by Instituto de Salud Carlos III (ISCIII) and the European Regional Development Fund (ERDF) “A way of making Europe”, number PI19/0093

    Dasatinib-induced spleen contraction leads to transient lymphocytosis

    Full text link
    The tyrosine kinase inhibitor dasatinib is approved for Philadelphia chromosome–positive leukemia, including chronic myeloid leukemia (CML). Although effective and well tolerated, patients typically exhibit a transient lymphocytosis after dasatinib uptake. To date, the underlying physiological process linking dasatinib to lymphocytosis remains unknown. Here, we used a small rodent model to examine the mechanism of dasatinib-induced lymphocytosis, focusing on lymphocyte trafficking into and out of secondary lymphoid organs. Our data indicate that lymphocyte homing to lymph nodes and spleen remained unaffected by dasatinib treatment. In contrast, dasatinib promoted lymphocyte egress from spleen with kinetics consistent with the observed lymphocytosis. Unexpectedly, dasatinib-induced lymphocyte egress occurred independently of canonical sphingosine-1-phosphate–mediated egress signals; instead, dasatinib treatment led to a decrease in spleen size, concomitant with increased splenic stromal cell contractility, as measured by myosin light chain phosphorylation. Accordingly, dasatinib-induced lymphocytosis was partially reversed by pharmacological inhibition of the contraction-promoting factor Rho-rho associated kinase. Finally, we uncovered a decrease in spleen size in patients with CML who showed lymphocytosis immediately after dasatinib treatment, and this reduction was proportional to the magnitude of lymphocytosis and dasatinib plasma levels. In summary, our work provides evidence that dasatinib-induced lymphocytosis is a consequence of drug-induced contractility of splenic stromal cell

    Investigación para la implementación de la farmacogenética clínica: desde estudios de genes candidatos hasta el modelado farmacocinético basado en la fisiología

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Farmacología. Fecha de lectura: 18-12-2020Pablo Zubiaur Precioso benefited from a pre-doctoral fellowship during his first two years of doctoral studies (2018 and 2019), financed by the Consejería de Educación, Juventud y Deporte of Comunidad de Madrid and by the European Social Fund (scholarship number: PEJD-2017-PRE/BMD-4164
    corecore