130 research outputs found

    Characterization of the Dynamic Transcriptome of a Herpesvirus with Long-read Single Molecule Real-Time Sequencing

    Get PDF
    Herpesvirus gene expression is co-ordinately regulated and sequentially ordered during productive infection. The viral genes can be classified into three distinct kinetic groups: immediate-early, early, and late classes. In this study, a massively parallel sequencing technique that is based on PacBio Single Molecule Real-time sequencing platform, was used for quantifying the poly(A) fraction of the lytic transcriptome of pseudorabies virus (PRV) throughout a 12- hour interval of productive infection on PK-15 cells. Other approaches, including microarray, real-time RT-PCR and Illumina sequencing are capable of detecting only the aggregate transcriptional activity of particular genomic regions, but not individual herpesvirus transcripts. However, SMRT sequencing allows for a distinction between transcript isoforms, including length- and splice variants, as well as between overlapping polycistronic RNA molecules. The non-amplified Isoform Sequencing (Iso-Seq) method was used to analyse the kinetic properties of the lytic PRV transcripts and to then classify them accordingly. Additionally, the present study demonstrates the general utility of long-read sequencing for the time-course analysis of global gene expression in practically any organism

    Long-read sequencing of the human cytomegalovirus transcriptome with the Pacific Biosciences RSII platform

    Get PDF
    AbstractLong-read RNA sequencing allows for the precise characterization of full-length transcripts, which makes it an indispensable tool in transcriptomics. The human cytomegalovirus (HCMV) genome has been first sequenced in 1989 and although short-read sequencing studies have uncovered much of the complexity of its transcriptome, only few of its transcripts have been fully annotated. We hereby present a long-read RNA sequencing dataset of HCMV infected human lung fibroblast cells sequenced by the Pacific Biosciences RSII platform. Seven SMRT cells were sequenced using oligo(dT) primers to reverse transcribe poly(A)-selected RNA molecules and one library was prepared using random primers for the reverse transcription of the rRNA-depleted sample. Our dataset contains 122,636 human and 33,086 viral (HMCV strain Towne) reads. The described data include raw and processed sequencing files, and combined with other datasets, they can be used to validate transcriptome analysis tools, to compare library preparation methods, to test base calling algorithms or to identify genetic variants.</jats:p

    Deletion of the virion host shut-off gene of pseudorabies virus results in selective upregulation of the expression of early viral genes in the late stage of infection

    Get PDF
    AbstractA real-time RT-PCR technique was applied to evaluate the impact of deletion of the virion host shut-off (VHS) gene on the kinetics of pseudorabies virus gene expression. Selective suppression of early gene transcripts by the viral ribonuclease occurs after 4h of infection; while VHS protein appears to act non-selectively on the transcripts belonging in different kinetic classes in the first 2h of infection. VHS protein disrupts the close correlation between the transcription kinetics of the immediate-early 180 protein and the other pseudorabies virus transcripts. The typical pattern of early gene expression was found to be altered in the VHS gene-deleted virus in that the production rates of their transcripts did not decline from 4h post-infection. This observation led us to put forward the hypothesis that the VHS protein may play a pivotal role in the switch from the early to the late stage of infection

    Third-generation Sequencing Reveals Extensive Polycistronism and Transcriptional Overlapping in a Baculovirus

    Get PDF
    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an insect-pathogen baculovirus. In this study, we applied the Oxford Nanopore Technologies platform for the analysis of the polyadenylated fraction of the viral transcriptome using both cDNA and direct RNA sequencing methods. We identified and annotated altogether 132 novel transcripts and transcript isoforms, including 4 coding and 4 non-coding RNA molecules, 47 length variants, 5 splice isoforms, as well as 23 polycistronic and 49 complex transcripts. All of the identified novel protein-coding genes were 5'-truncated forms of longer host genes. In this work, we demonstrated that in the case of transcript start site isoforms, the promoters and the initiator sequence of the longer and shorter variants belong to the same kinetic class. Long-read sequencing also revealed a complex meshwork of transcriptional overlaps, the function of which needs to be clarified. Additionally, we developed bioinformatics methods to improve the transcript annotation and to eliminate the non-specific transcription reads generated by template switching and false priming

    Use of a recombinant pseudorabies virus to analyze motor cortical reorganization after unilateral facial denervation

    Get PDF
    A unilateral facial nerve injury (n7x) was found to influence the transcallosal spread of the attenuated strain of pseudorabies virus (PRV Bartha) from the affected (left) primary motor cortex (MI) to the contralateral MI of rats. We used Ba-DupLac, a recombinant PRV strain, for the tracing experiments since this virus was demonstrated to exhibit much more restricted transportation kinetics than that of PRV Bartha, and is therefore more suitable for studies of neuronal plasticity. Ba-Duplac injection primarily infected several neurons around the penetration channel, but hardly any transcallosally infected neurons were observed in the contraleral MI. In contrast, after right facial nerve injury, Ba-DupLac was transported from the primarily infected neurons in the left MI to the contralateral side, and resulted in the labeling of several neurons due to a transneuronal infection. These results reveal that a peripheral nerve injury induces changes in the Ba-DupLac infection pattern in the related cortical areas. These findings and the literature data suggest that this phenomenon may be related to the changes in the expression or to the redistribution of cell-adhesion molecules, which are known to facilitate the entrance and/or transmission of PRV into neurons

    Multi-Platform Sequencing Approach Reveals a Novel Transcriptome Profile in Pseudorabies Virus

    Get PDF
    Third-generation sequencing is an emerging technology that is capable of solving several problems that earlier approaches were not able to, including the identification of transcripts isoforms and overlapping transcripts. In this study, we used long-read sequencing for the analysis of pseudorabies virus (PRV) transcriptome, including Oxford Nanopore Technologies MinION, PacBio RS-II, and Illumina HiScanSQ platforms. We also used data from our previous short-read and long-read sequencing studies for the comparison of the results and in order to confirm the obtained data. Our investigations identified 19 formerly unknown putative protein-coding genes, all of which are 5′ truncated forms of earlier annotated longer PRV genes. Additionally, we detected 19 non-coding RNAs, including 5′ and 3′ truncated transcripts without in-frame ORFs, antisense RNAs, as well as RNA molecules encoded by those parts of the viral genome where no transcription had been detected before. This study has also led to the identification of three complex transcripts and 50 distinct length isoforms, including transcription start and end variants. We also detected 121 novel transcript overlaps, and two transcripts that overlap the replication origins of PRV. Furthermore, in silico analysis revealed 145 upstream ORFs, many of which are located on the longer 5′ isoforms of the transcripts

    Whole-genome analysis of pseudorabies virus gene expression by real-time quantitative RT-PCR assay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudorabies virus (PRV), a neurotropic herpesvirus of pigs, serves as an excellent model system with which to investigate the herpesvirus life cycle both in cultured cells and <it>in vivo</it>. Real-time RT-PCR is a very sensitive, accurate and reproducible technique that can be used to detect very small amounts of RNA molecules, and it can therefore be applied for analysis of the expression of herpesvirus genes from the very early period of infection.</p> <p>Results</p> <p>In this study, we have developed and applied a quantitative reverse transcriptase-based real-time PCR technique in order to profile transcription from the whole genome of PRV after lytic infection in porcine kidney cells. We calculated the relative expression ratios in a novel way, which allowed us to compare different PRV genes with respect to their expression dynamics, and to divide the PRV genes into distinct kinetic classes. This is the first publication on the whole-genome analysis of the gene expression of an alpha-herpesvirus by qRT2-PCR. We additionally established the kinetic properties of uncharacterized PRV genes and revised or confirmed data on PRV genes earlier examined by traditional methods such as Northern blot analysis. Our investigations revealed that genes with the same expression properties form clusters on the PRV genome: nested overlapping genes belong in the same kinetic class, while most convergent genes belong in different kinetic classes. Further, we detected inverse relationships as concerns the expressions of EP0 and IE180 mRNAs and their antisense partners.</p> <p>Conclusion</p> <p>Most (if not all) PRV genes begin to be expressed from the onset of viral expression. No sharp boundary was found between the groups of early and late genes classified on the basis of their requirement for viral DNA synthesis. The expressions of the PRV genes were analyzed, categorized and compared by qRT2-PCR assay, with the average of the minimum cycle threshold used as a control for the calculation of a particular R value. In principle, this new calculation technique is applicable for the analysis of gene expression in all temporally changing genetic systems.</p
    • …
    corecore