13 research outputs found

    Safety profile and probe placement accuracy of intraspinal pressure monitoring for traumatic spinal cord injury: Injured Spinal Cord Pressure Evaluation study.

    Get PDF
    OBJECTIVE A novel technique for monitoring intraspinal pressure and spinal cord perfusion pressure in patients with traumatic spinal cord injury was recently described. This is analogous to monitoring intracranial pressure and cerebral perfusion pressure in patients with traumatic brain injury. Because intraspinal pressure monitoring is a new technique, its safety profile and impact on early patient care and long-term outcome after traumatic spinal cord injury are unknown. The object of this study is to review all patients who had intraspinal pressure monitoring to date at the authors' institution in order to define the accuracy of intraspinal pressure probe placement and the safety of the technique. METHODS At the end of surgery to fix spinal fractures, a pressure probe was inserted intradurally to monitor intraspinal pressure at the injury site. Postoperatively, CT scanning was performed within 48 hours and MRI at 2 weeks and 6 months. Neurointensive care management and complications were reviewed. The American Spinal Injury Association Impairment Scale (AIS) grade was determined on admission and at 2 to 4 weeks and 12 to 18 months postoperation. RESULTS To date, 42 patients with severe traumatic spinal cord injuries (AIS Grades A-C) had undergone intraspinal pressure monitoring. Monitoring started within 72 hours of injury and continued for up to a week. Based on postoperative CT and MRI, the probe position was acceptable in all patients, i.e., the probe was located at the site of maximum spinal cord swelling. Complications were probe displacement in 1 of 42 patients (2.4%), CSF leakage that required wound resuturing in 3 of 42 patients (7.1%), and asymptomatic pseudomeningocele that was diagnosed in 8 of 42 patients (19.0%). Pseudomeningocele was diagnosed on MRI and resolved within 6 months in all patients. Based on the MRI and neurological examination results, there were no serious probe-related complications such as meningitis, wound infection, hematoma, wound breakdown, or neurological deterioration. Within 2 weeks postoperatively, 75% of patients were extubated and 25% underwent tracheostomy. Norepinephrine was used to support blood pressure without complications. Overall, the mean intraspinal pressure was around 20 mm Hg, and the mean spinal cord perfusion pressure was around 70 mm Hg. In laminectomized patients, the intraspinal pressure was significantly higher in the supine than lateral position by up to 18 mm Hg after thoracic laminectomy and 8 mm Hg after cervical laminectomy. At 12 to 18 months, 11.4% of patients had improved by 1 AIS grade and 14.3% by at least 2 AIS grades. CONCLUSIONS These data suggest that after traumatic spinal cord injury intradural placement of the pressure probe is accurate and intraspinal pressure monitoring is safe for up to a week. In patients with spinal cord injury who had laminectomy, the supine position should be avoided in order to prevent rises in intraspinal pressure

    Measurement of Intraspinal Pressure After Spinal Cord Injury: Technical Note from the Injured Spinal Cord Pressure Evaluation Study.

    Get PDF
    Intracranial pressure (ICP) is routinely measured in patients with severe traumatic brain injury (TBI). We describe a novel technique that allowed us to monitor intraspinal pressure (ISP) at the injury site in 14 patients who had severe acute traumatic spinal cord injury (TSCI), analogous to monitoring ICP after brain injury. A Codman probe was inserted subdurally to measure the pressure of the injured spinal cord compressed against the surrounding dura. Our key finding is that it is feasible and safe to monitor ISP for up to a week in patients after TSCI, starting within 72 h of the injury. With practice, probe insertion and calibration take less than 10 min. The ISP signal characteristics after TSCI were similar to the ICP signal characteristics recorded after TBI. Importantly, there were no associated complications. Future studies are required to determine whether reducing ISP improves neurological outcome after severe TSCI

    Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study.

    Get PDF
    We recently showed that, after traumatic spinal cord injury (TSCI), laminectomy does not improve intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), or the vascular pressure reactivity index (sPRx) at the injury site sufficiently because of dural compression. This is an open label, prospective trial comparing combined bony and dural decompression versus laminectomy. Twenty-one patients with acute severe TSCI had re-alignment of the fracture and surgical fixation; 11 had laminectomy alone (laminectomy group) and 10 had laminectomy and duroplasty (laminectomy+duroplasty group). Primary outcomes were magnetic resonance imaging evidence of spinal cord decompression (increase in intradural space, cerebrospinal fluid around the injured cord) and spinal cord physiology (ISP, SCPP, sPRx). The laminectomy and laminectomy+duroplasty groups were well matched. Compared with the laminectomy group, the laminectomy+duroplasty group had greater increase in intradural space at the injury site and more effective decompression of the injured cord. In the laminectomy+duroplasty group, ISP was lower, SCPP higher, and sPRx lower, (i.e., improved vascular pressure reactivity), compared with the laminectomy group. Laminectomy+duroplasty caused cerebrospinal fluid leak that settled with lumbar drain in one patient and pseudomeningocele that resolved completely in five patients. We conclude that, after TSCI, laminectomy+duroplasty improves spinal cord radiological and physiological parameters more effectively than laminectomy alone

    Spinal cord perfusion pressure correlates with breathing function in patients with acute, cervical traumatic spinal cord injuries: an observational study.

    Get PDF
    OBJECTIVE: This study aims to determine the relationship between spinal cord perfusion pressure (SCPP) and breathing function in patients with acute cervical traumatic spinal cord injuries. METHODS: We included 8 participants without cervical TSCI plus 13 patients with cervical traumatic spinal cord injuries, American Spinal Injury Association Impairment Scale grades A-C. In the TSCI patients, we monitored intraspinal pressure from the injury site for up to a week and computed the SCPP as mean arterial pressure minus intraspinal pressure. Breathing function was quantified by diaphragmatic electromyography using an EDI (electrical activity of the diaphragm) nasogastric tube as well as by ultrasound of the diaphragm and the intercostal muscles performed when sitting at 20°-30°. RESULTS: We analysed 106 ultrasound examinations (total 1370 images/videos) and 198 EDI recordings in the patients with cervical traumatic spinal cord injuries. During quiet breathing, low SCPP ( 100 mmHg. CONCLUSIONS: After acute, cervical traumatic spinal cord injuries, breathing function depends on the SCPP. SCPP 80-90 mmHg correlates with optimum diaphragmatic and intercostal muscle function. Our findings raise the possibility that intervention to maintain SCPP in this range may accelerate ventilator liberation which may reduce stay in the neuro-intensive care unit

    Predictors of Intraspinal Pressure and Optimal Cord Perfusion Pressure After Traumatic Spinal Cord Injury.

    Get PDF
    BACKGROUND/OBJECTIVES: We recently developed techniques to monitor intraspinal pressure (ISP) and spinal cord perfusion pressure (SCPP) from the injury site to compute the optimum SCPP (SCPPopt) in patients with acute traumatic spinal cord injury (TSCI). We hypothesized that ISP and SCPPopt can be predicted using clinical factors instead of ISP monitoring. METHODS: Sixty-four TSCI patients, grades A-C (American spinal injuries association Impairment Scale, AIS), were analyzed. For 24 h after surgery, we monitored ISP and SCPP and computed SCPPopt (SCPP that optimizes pressure reactivity). We studied how well 28 factors correlate with mean ISP or SCPPopt including 7 patient-related, 3 injury-related, 6 management-related, and 12 preoperative MRI-related factors. RESULTS: All patients underwent surgery to restore normal spinal alignment within 72 h of injury. Fifty-one percentage had U-shaped sPRx versus SCPP curves, thus allowing SCPPopt to be computed. Thirteen percentage, all AIS grade A or B, had no U-shaped sPRx versus SCPP curves. Thirty-six percentage (22/64) had U-shaped sPRx versus SCPP curves, but the SCPP did not reach the minimum of the curve, and thus, an exact SCPPopt could not be calculated. In total 5/28 factors were associated with lower ISP: older age, excess alcohol consumption, nonconus medullaris injury, expansion duroplasty, and less intraoperative bleeding. In a multivariate logistic regression model, these 5 factors predicted ISP as normal or high with 73% accuracy. Only 2/28 factors correlated with lower SCPPopt: higher mean ISP and conus medullaris injury. In an ordinal multivariate logistic regression model, these 2 factors predicted SCPPopt as low, medium-low, medium-high, or high with only 42% accuracy. No MRI factors correlated with ISP or SCPPopt. CONCLUSIONS: Elevated ISP can be predicted by clinical factors. Modifiable factors that may lower ISP are: reducing surgical bleeding and performing expansion duroplasty. No factors accurately predict SCPPopt; thus, invasive monitoring remains the only way to estimate SCPPopt
    corecore