27,450 research outputs found

    Impurity scattering and Friedel oscillations in mono-layer black phosphorus

    Full text link
    We study the effect of impurity scattering effect in black phosphorurene (BP) in this work. For single impurity, we calculate impurity induced local density of states (LDOS) in momentum space numerically based on tight-binding Hamiltonian. In real space, we calculate LDOS and Friedel oscillation analytically. LDOS shows strong anisotropy in BP. Many impurities in BP are investigated using TT-matrix approximation when the density is low. Midgap states appear in band gap with peaks in DOS. The peaks of midgap states are dependent on impurity potential. For finite positive potential, the impurity tends to bind negative charge carriers and vise versa. The infinite impurity potential problem is related to chiral symmetry in BP

    Spin correlated interferometry for polarized and unpolarized photons on a beam splitter

    Get PDF
    Spin interferometry of the 4th order for independent polarized as well as unpolarized photons arriving simultaneously at a beam splitter and exhibiting spin correlation while leaving it, is formulated and discussed in the quantum approach. Beam splitter is recognized as a source of genuine singlet photon states. Also, typical nonclassical beating between photons taking part in the interference of the 4th order is given a polarization dependent explanation.Comment: RevTeX, 19 pages, 1 ps figure, author web page at http://m3k.grad.hr/pavici

    The Chord-Normalized Expected Species Shared (CNESS)-distance represents a superior measure of species turnover patterns

    Get PDF
    1. Measures of β-diversity characterizing the difference in species composition between samples are commonly used in ecological studies. Nonetheless, commonly used dissimilarity measures require high sample completeness, or at least similar sample sizes between samples. In contrast, the Chord-Normalized Expected Species Shared (CNESS) dissimilarity measure calculates the probability of collecting the same set of species in random samples of a standardized size, and hence is not sensitive to completeness or size of compared samples. To date, this index has enjoyed limited use due to difficulties in its calculation and scarcity of studies systematically comparing it with other measures. 2. Here, we developed a novel R function that enables users to calculate ESS (Expected Species Shared)-associated measures. We evaluate the performance of the CNESS index based on simulated datasets of known species distribution structure, and compared CNESS with more widespread dissimilarity measures (Bray-Curtis index, Chao-Sørensen index, and proportionality based Euclidean distances) for varying sample completeness and sample sizes. 3. Simulation results indicated that for small sample size (m) values, CNESS chiefly reflects similarities in dominant species, while selecting large m values emphasizes differences in the overall species assemblages. Permutation tests revealed that CNESS has a consistently low CV (coefficient of variation) even where sample completeness varies, while the Chao-Sørensen index has a high CV particularly for low sampling completeness. CNESS distances are also more robust than other indices with regards to undersampling, particularly when chiefly rare species are shared between two assemblages. 4. Our results emphasize the superiority of CNESS for comparisons of samples diverging in sample completeness and size, which is particular important in studies of highly mobile and species-rich taxa where sample completeness is often low. Via changes in the sample size parameter m, CNESS furthermore cannot only provide insights into the similarity of the overall distribution structure of shared species, but also into the differences in dominant and rare species, hence allowing additional, valuable insights beyond the capability of more widespread measures

    Estimating the number of species shared by incompletely sampled communities

    Get PDF
    There are numerous ways to estimate the true number of species in a community based on incomplete samples. Nonetheless, comparable approaches to estimate the number of species shared between two incompletely sampled communities are scarce. Here, we introduce the ‘total expected species shared' (TESS) measure and provide the R function for its calculation. Based on parametric asymptotic models, TESS provides estimates of the true number of species shared between incompletely sampled communities based on abundance data. We compare TESS results with abundance-based non-parametric methods in terms of precision and accuracy, using different simulated sampling scenarios. We further calculate TESS using an empirical dataset, highlighting changes in accuracy and precision with increasing sample size. We also demonstrate how TESS values can be combined with species richness estimators in turnover estimates using traditional β-diversity indices. Our results show that mean values of TESS reliably approximate the true shared species number for varying sample completeness scenarios, with both accuracy and precision increasing with increasing sample completeness. Overall, we demonstrate the viability of TESS in estimations of the true number of species shared between two incompletely sampled communities. We also stress the importance of a sufficient sample size for the accuracy of estimates – requiring sampling designs that carefully balance sampling effort per site with the number of sampling sites

    Evolution of InAs branches in InAs/GaAs nanowire heterostructures

    Get PDF
    Branched nanowireheterostructures of InAs∕GaAs were observed during Au-assisted growth of InAs on GaAsnanowires. The evolution of these branches has been determined through detailed electron microscopy characterization with the following sequence: (1) in the initial stage of InAsgrowth, the Au droplet is observed to slide down the side of the GaAsnanowire, (2) the downward movement of Aunanoparticle later terminates when the nanoparticle encounters InAsgrowing radially on the GaAsnanowire sidewalls, and (3) with further supply of In and As vapor reactants, the Aunanoparticles assist the formation of InAs branches with a well-defined orientation relationship with GaAs∕InAs core/shell stems. We anticipate that these observations advance the understanding of the kink formation in axial nanowireheterostructures.The Australian Research Council is acknowledged for the financial support of this project. One of the authors M.P. acknowledges the support of an International Postgraduate Research Scholarship
    • …
    corecore