209 research outputs found

    Navigating the Anterior-Posterior Axis with Wnts

    Get PDF
    Recent studies have begun to shed light on the molecular guidance cues controlling anterior-posterior axon guidance. Two recent studies in the current issue of Developmental Cell show that Wnts play critical roles in patterning processes and directing neuronal migration in C. elegans. Together with previous findings in vertebrates and flies, these new results establish conserved function of Wnts in A-P guidance

    Expression of the Wnt signaling system in central nervous system axon guidance and regeneration

    Get PDF
    Wnt signaling is essential for axon wiring throughout the development of the nervous system in vertebrates and invertebrates. In rodents, Wnts are expressed in gradients that span the entire anteriorā€“posterior (Aā€“P) axis in the spinal cord and the medialā€“lateral axis in the superior colliculus. In the brainstem, Wnts are expressed in more complex gradients along the Aā€“P axis. These gradients provide directional information for axon pathfinding and positional information for topographic mapping and are detected by cell polarity signaling pathways in the growth cone. The gradient expression of Wnts and the coordinated expression of Wnt signaling systems are regulated by mechanisms which are currently unknown. Injury to the adult spinal cord results in the re-induction of Wnts in multiple cell types around the lesion site and their signaling system in injured axons. The re-induced Wnts form gradients around the lesion site, with the lesion site being the peak. The re-inducedWnts may be responsible for the well-known retraction of descending motor axons through the receptor Ryk (related receptor tyrosine kinases). Wnt signaling is an appealing new therapeutic target for CNS repair. The mechanisms regulating the re-induction are unknown but will be informative for therapeutic design

    Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wnt proteins comprise a large class of signaling molecules that regulate a variety of developmental processes, including synapse formation. Previous studies have shown Wnts to be involved in both the induction and prevention of synapses in a number of different organisms. However, it is not clear whether the influence of Wnts on synapses is a result of Wnts' behavior in different organisms or differences in the activity of different Wnt ligands.</p> <p>Results</p> <p>We used <it>in situ </it>hybridization to show that several Wnt ligands (Wnt3, Wnt5a, Wnt7a, and Wnt7b) and their receptors, Frizzled, are expressed in the developing hippocampus during the period of synapse formation in rodents. We used recombinant Wnt protein or Wnt conditioned media to explore the effects of Wnts on synapses in hippocampal cultures. We found that Wnt7a and Wnt7b activate canonical signaling, whereas Wnt5a activates a noncanonical pathway. The activation of the canonical pathway, either through pathway manipulations or through Wnt stimulation, increases presynaptic inputs. In contrast, exposure to Wnt5a, which activates a noncanonical signaling pathway, decreases the number of presynaptic terminals.</p> <p>Conclusion</p> <p>Our observations suggest that the pro- and antisynaptogenic effects of Wnt proteins are associated with the activation of the canonical and noncanonical Wnt signaling pathways.</p

    Mechanical deformation mechanism and verification of sections at junctions of light and dark tunnel in a mountain area

    Get PDF
    Projects involving junctions of light and dark tunnel in mountainous areas are complex engineering problems that combine tunnel structure, slope rock-soil mass and protection projects. Such junctions suffer from a complex and changeable load. The stress and deformation of the junction varies under different conditions. Thus, it is a major source of inconvenience for construction and monitoring operations. In this paper, according to the load conditions at a junction of light and dark tunnel, we divide the junction hole into thrust, compression, and combined thrust-compression types. Three types of structures were simulated by numerical analysis, and we explored the structural deformation and stress of these types of tunnel under different condition. Thus, in any construction process, the mechanical deformation mechanism and the weak point in the structure should be worked out. Based on the weak parts, some monitoring points were installed, and four fields for monitoring were chosen. The monitoring results show that the actual deformation, stress and structural failure location are basically consistent with the numerical simulation results. The deformation mechanism of light and dark tunnel junction obtained can provide the basis for selecting the treatment measures and controlling the structural deformation. Furthermore, the results can also be used as a reference for similar engineering design, construction and site monitoring projects

    Deep-agriNet: a lightweight attention-based encoder-decoder framework for crop identification using multispectral images

    Get PDF
    The field of computer vision has shown great potential for the identification of crops at large scales based on multispectral images. However, the challenge in designing crop identification networks lies in striking a balance between accuracy and a lightweight framework. Furthermore, there is a lack of accurate recognition methods for non-large-scale crops. In this paper, we propose an improved encoder-decoder framework based on DeepLab v3+ to accurately identify crops with different planting patterns. The network employs ShuffleNet v2 as the backbone to extract features at multiple levels. The decoder module integrates a convolutional block attention mechanism that combines both channel and spatial attention mechanisms to fuse attention features across the channel and spatial dimensions. We establish two datasets, DS1 and DS2, where DS1 is obtained from areas with large-scale crop planting, and DS2 is obtained from areas with scattered crop planting. On DS1, the improved network achieves a mean intersection over union (mIoU) of 0.972, overall accuracy (OA) of 0.981, and recall of 0.980, indicating a significant improvement of 7.0%, 5.0%, and 5.7%, respectively, compared to the original DeepLab v3+. On DS2, the improved network improves the mIoU, OA, and recall by 5.4%, 3.9%, and 4.4%, respectively. Notably, the number of parameters and giga floating-point operations (GFLOPs) required by the proposed Deep-agriNet is significantly smaller than that of DeepLab v3+ and other classic networks. Our findings demonstrate that Deep-agriNet performs better in identifying crops with different planting scales, and can serve as an effective tool for crop identification in various regions and countries

    Analysis of clinical features and pulmonary CT features of coronavirus disease 2019 (COVID-19) patients with diabetes mellitus

    Get PDF
    Introduction: The objective of this paper was to investigate the clinical features and pulmonary CT imaging features of COVID-19 patients with diabetes mellitus. Material and methods: From January 16, 2020 to March 28, 2020, among the 568 cases of COVID-19 patients diagnosed in Xiaogan Central Hospital, 64 cases of COVID-19 patients with diabetes were selected as the diabetic group, and 64 cases of COVID-19 patients with age and gender matching without diabetes were selected as the non-diabetic group, and their clinical data and pulmonary CT characteristics were retrospectively analysed. Results: Compared with the non-diabetic group, the proportion of patients in the diabetic group with chronic underlying disease was higher, and they were in more a serious condition at admission. Inflammation index and characteristics of glycolipid metabolism results showed that COVID-19 patients with diabetes mellitus were more likely to have elevated inflammatory markers and hypercoagulability, accompanied by hypoproteinaemia and glucose and lipid metabolism disorders. Treatment and clinic outcome results showed that the time of nucleic acid turning negative in the diabetic group was significantly longer than that in the non-diabetic group. Radiological data showed that COVID-19 combined with diabetes prolonged the time of detoxification in patients. Conclusion: COVID-19 patients with diabetes mellitus and chronic hypertension are associated with increased inflammatory markers and disorders of glucose and lipid metabolism. These patients tend to develop serious diseases, especially the rapid progression of CT lesions in the lungs of patients with a wide range ofĀ involvement, and prolonged absorption and detoxification time
    • ā€¦
    corecore