641 research outputs found
Research on the investment value of China’s medical sector in the context of COVID-19
COVID-19 has slowed the growth of, the global economy, which has
certain practical significance. Consequently, this study seeks to analyze
the investment opportunities in the medical sector before and
after the COVID-19 outbreak. In this study, the Markowitz mean–variance
(MV) model, capital asset pricing model (CAPM), and correlation
models are constructed based on the principle of Markowitz
MV and correlation analysis. Simultaneously, statistical analysis is
used to verify the analysis, and the MATLAB statistical tool is used
to build the model. The results show that the actual expected yield
of China’s medical sector is significantly higher than that calculated
by the CAPM before and after the pandemic, and that the investment
value of the medical sector is undervalued by the market.
From the perspective of risk, China’s medical sector has a stable systemic
risk premium. Based on the above analysis, when building
investment portfolios in the post-pandemic era, investors should
appropriately allocate stocks in the medical and pharmaceutical sectors
to improve the portfolio income and diversify the investment
risk
Effects of truffle inoculation on a nursery culture substrate environment and seedling of Carya illinoinensis
We inoculated Tuber aestivum and Tuber sinoaestivum on Carya illinoinensis to explore the effects of inoculation on host plant growth, enzyme activities, the physicochemical properties of rhizosphere soil, the denitrifying bacterial community in the rhizosphere, and the distribution of mating type genes in the rhizosphere. We found that the Tuber spp. inoculation increased the height of the host plant and that the stem circumference of the host was greater two months after inoculation. Six months after inoculation, the peroxidase activity of the seedlings inoculated with T. sinoaestivum was higher than that of the control. At four and six months after inoculation, the superoxidase dismutase activities of the seedlings inoculated with T. aestivum were higher than those of the seedlings inoculated with T. sinoaestivum. Six months after inoculation, nitrate nitrogen content was lowest in the control and highest in the T. sinoaestivum treatment. Among the nirS-type denitrifying bacteria community, the relative abundances of Proteobacteria were high. T. aestivum and T. sinoaestivum inoculation did not affect the diversity of denitrifying bacteria. The mating type genes MAT1-1-1 and MAT1-2-1 were detected in the rhizosphere of C. illinoinensis inoculated with T. sinoaestivum and T. aestivum, and MAT1-1-1 dominated over MAT1-21. (c) 2021 British Mycological Society. Published by Elsevier Ltd. All rights reserved.Peer reviewe
MOEA with adaptive operator based on reinforcement learning for weapon target assignment
Weapon target assignment (WTA) is a typical problem in the command and control of modern warfare. Despite the significance of the problem, traditional algorithms still have shortcomings in terms of efficiency, solution quality, and generalization. This paper presents a novel multi-objective evolutionary optimization algorithm (MOEA) that integrates a deep Q-network (DQN)-based adaptive mutation operator and a greedy-based crossover operator, designed to enhance the solution quality for the multi-objective WTA (MO-WTA). Our approach (NSGA-DRL) evolves NSGA-II by embedding these operators to strike a balance between exploration and exploitation. The DQN-based adaptive mutation operator is developed for predicting high-quality solutions, thereby improving the exploration process and maintaining diversity within the population. In parallel, the greedy-based crossover operator employs domain knowledge to minimize ineffective searches, focusing on exploitation and expediting convergence. Ablation studies revealed that our proposed operators significantly boost the algorithm performance. In particular, the DQN mutation operator shows its predictive effectiveness in identifying candidate solutions. The proposed NSGA-DRL outperforms state-and-art MOEAs in solving MO-WTA problems by generating high-quality solutions
Effect of CdS/Mg-Doped CdSe Cosensitized Photoanode on Quantum Dot Solar Cells
Quantum dots have emerged as a material platform for low-cost high-performance sensitized solar cells. And doping is an effective method to improve the performance of quantum dot sensitized solar cells (QDSSCs). Since Kwak et al. from South Korea proved the incorporation of Mg in the CdSe quantum dots (QDs) in 2007, the Mg-doped CdSe QDs have been thoroughly studied. Here we report a new attempt on CdS/Mg-doped CdSe quantum dot cosensitized solar cells (QDCSSC). We analyzed the performance of CdS/Mg-doped CdSe quantum dot cosensitized solar cells via discussing the different doping concentration of Mg and the different SILAR cycles of CdS. And we studied the mechanism of CdS/Mg-doped CdSe QDs in detail for the reason why the energy conversion efficiency had been promoted. It is a significant instruction on the development of Mg-doped CdSe quantum dot sensitized solar cells (QDSSCs)
Mycorrhization of Quercus acutissima with Chinese black truffle significantly altered the host physiology and root-associated microbiomes
Background Our aim was to explore how the ectomycorrhizae of an indigenous tree,Quercus acutissima, with a commercial truffle, Chinese black truffle (Tuber indicum), affects the host plant physiology and shapes the associated microbial communities in the surrounding environment during the early stage of symbiosis. Methods To achieve this, changes in root morphology and microscopic characteristics, plant physiology indices, and the rhizosphere soil properties were investigated when six-month-old ectomycorrhizae were synthesized. Meanwhile, next-generation sequencing technology was used to analyze the bacterial and fungal communities in the root endosphere and rhizosphere soil inoculated with T. indicum or not. Results The results showed that colonization by T. indicum significantly improved the activity of superoxide dismutase in roots but significantly decreased the root activity. The biomass, leaf chlorophyll content and root peroxidase activity did not obviously differ. Ectomycorrhization of Q. acutissima with T. indicum affected the characteristics of the rhizosphere soil, improving the content of organic matter, total nitrogen, total phosphorus and available nitrogen. The bacterial and fungal community composition in the root endosphere and rhizosphere soil was altered by T. indicum colonization, as was the community richness and diversity. The dominant bacteria in all the samples were Proteobacteria and Actinobacteria, and the dominant fungi were Eukaryota_norank, Ascomycota, and Mucoromycota. Some bacterial communities, such as Streptomyces, SM1A02, and Rhizomicrobium were more abundant in the ectomycorrhizae or ectomycorrhizosphere soil. Tuber was the second-most abundant fungal genus, and Fusarium was present at lower amounts in the inoculated samples. Discussion Overall, the symbiotic relationship between Q. acutissima and T. indicum had an obvious effect on host plant physiology, soil properties, and microbial community composition in the root endosphere and rhizosphere soil, which could improve our understanding of the symbiotic relationship between Q. acutissima and T. indicum, and may contribute to the cultivation of truffle
Effect of Annealing Process on CH 3
The morphology of compact TiO2 film used as an electron-selective layer and perovskite film used as a light absorption layer in planar perovskite solar cells has a significant influence on the photovoltaic performance of the devices. In this paper, the spin coating speed of the compact TiO2 is investigated in order to get a high-quality film and the compact TiO2 film exhibits pinhole- and crack-free films treated by 2000 rpm for 60 s. Furthermore, the effect of annealing process, including annealing temperature and annealing program, on CH3NH3PbI3-XClX film morphology is studied. At the optimal annealing temperature of 100°C, the CH3NH3PbI3-XClX morphology fabricated by multistep slow annealing method has smaller grain boundaries and holes than that prepared by one-step direct annealing method, which results in the reduction of grain boundary recombination and the increase of Voc. With all optimal procedures, a planar fluorine-doped tin oxide (FTO) substrate/compact TiO2/CH3NH3PbI3-XClX/Spiro-MeOTAD/Au cell is prepared for an active area of 0.1 cm2. It has achieved a power conversion efficiency (PCE) of 14.64%, which is 80.3% higher than the reference cell (8.12% PCE) without optimal perovskite layer. We anticipate that the annealing process with optimal compact TiO2 layer would possibly become a promising method for future industrialization of planar perovskite solar cells
Effect of Codoping Cl Anion and 5-AVA Cation on Performance of Large-Area Perovskite Solar Cells with Double-Mesoporous Layers
For the perovskite solar cells (PSCs), the performance of the PSCs has become the focus of the research by improving the quality of the perovskite absorption layer. So far, the performance of the large-area PSCs is lower than that of small-area PSCs. In the paper, the experiments were designed to improve the photovoltaic performance of the large-area PSCs by improved processing technique. Here we investigated the optoelectronic properties of the prototypical CH3NH3PbI3 (MAPbI3) further modulated by introducing other extrinsic ions (specifically codoped Cl− and 5-AVA+). Moreover, we used inorganic electron extraction layer to achieve very rapid photogenerated carrier extraction eliminating local structural defects over large areas. Ultimately, we fabricated a best-performing perovskite solar cell based on codoping Cl anion and 5-AVA cation which uses a double layer of mesoporous TiO2 and ZrO2 as a scaffold infiltrated with perovskite and does not require a hole-conducting layer. The experiment results indicated that an average efficiency of double-mesoporous layer-based devices with codoping Cl anion and 5-AVA cation was obtained with exceeding 50% enhancement, compared to that of pure single-mesoporous layer-based device
ImMesh: An Immediate LiDAR Localization and Meshing Framework
In this paper, we propose a novel LiDAR(-inertial) odometry and mapping
framework to achieve the goal of simultaneous localization and meshing in
real-time. This proposed framework termed ImMesh comprises four tightly-coupled
modules: receiver, localization, meshing, and broadcaster. The localization
module utilizes the prepossessed sensor data from the receiver, estimates the
sensor pose online by registering LiDAR scans to maps, and dynamically grows
the map. Then, our meshing module takes the registered LiDAR scan for
incrementally reconstructing the triangle mesh on the fly. Finally, the
real-time odometry, map, and mesh are published via our broadcaster. The key
contribution of this work is the meshing module, which represents a scene by an
efficient hierarchical voxels structure, performs fast finding of voxels
observed by new scans, and reconstructs triangle facets in each voxel in an
incremental manner. This voxel-wise meshing operation is delicately designed
for the purpose of efficiency; it first performs a dimension reduction by
projecting 3D points to a 2D local plane contained in the voxel, and then
executes the meshing operation with pull, commit and push steps for incremental
reconstruction of triangle facets. To the best of our knowledge, this is the
first work in literature that can reconstruct online the triangle mesh of
large-scale scenes, just relying on a standard CPU without GPU acceleration. To
share our findings and make contributions to the community, we make our code
publicly available on our GitHub: https://github.com/hku-mars/ImMesh
Nectarine promotes longevity in Drosophila melanogaster.
Fruits containing high antioxidant capacities and other bioactivities are ideal for promoting longevity and health span. However, few fruits are known to improve the survival and health span in animals, let alone the underlying mechanisms. Here we investigate the effects of nectarine, a globally consumed fruit, on life span and health span in Drosophila melanogaster. Wild-type flies were fed standard, dietary restriction (DR), or high-fat diet supplemented with 0-4% nectarine extract. We measured life span, food intake, locomotor activity, fecundity, gene expression changes, and oxidative damage indicated by the level of 4-hydroxynonenal-protein adduct in these flies. We also measured life span, locomotor activity, and oxidative damage in sod1 mutant flies on the standard diet supplemented with 0-4% nectarine. Supplementation with 4% nectarine extended life span, increased fecundity, and decreased expression of some metabolic genes, including a key gluconeogenesis gene, PEPCK, and oxidative stress-response genes, including peroxiredoxins, in female wild-type flies fed the standard, DR, or high-fat diet. Nectarine reduced oxidative damage in wild-type females fed the high-fat diet. Moreover, nectarine improved the survival of and reduced oxidative damage in female sod1 mutant flies. Together, these findings suggest that nectarine promotes longevity and health span partly by modulating glucose metabolism and reducing oxidative damage
- …