72 research outputs found
Developments in the Role of Iron Imbalance in the Pathogenesis of Alzheimer's Disease
Iron load is closely associated with the initiation and progression of Alzheimer's disease (AD) . Although age-dependent deposition of β-amyloid (A β) in senile plaques (SPs) , and neurofibrillary tangles (NFTs) formed by accumulation of hyperphosphorylated tau proteins are two major pathological features of AD, there are still many different views on the inducing factors of SPs and NFTs. We reviewed the new developments in the relationship between imbalance of brain iron homeostasis and the pathogenesis of AD, with a summary presented as follows: (1) Age-related iron deposits in different brain regions may damage normal cognitive function and behavior. (2) Iron imbalance and oxidative stress may together or independently promote Aβ overproduction by activating β- or γ-secretases and inhibiting α-secretase, and also cause tau hyperphosphorylation by activating protein kinases, such as glycogen synthase kinase-3β, cyclin-dependent protein kinase-5, and inhibiting protein phosphatase 2A. Iron imbalance-induced changes will in turn aggravate brain iron deposition and distribution. The vicious circle between iron imbalance and Aβ/tau anomalies may eventually lead to AD. (3) Iron overload may also directly or indirectly injure organelles, causing endoplasmic reticulum stress, mitochondrial and autophagy dysfunction, and damaging synaptic function via inducing or aggravating the aggregation or accumulation of A βand tau. At the same time, hydroxyl radicals produced via the Fenton reaction associated with abnormal iron metabolism, may trigger oxidative stress, destroy the structure and function of cell lipids, protein and DNA, eventually leading to cell death. (4) Given the limitations and side effects of long-term application of traditional iron chelators, alpha-lipoic acid and lactoferrin as self-synthesized naturally small molecules, are expected to be applied to clinical practice, for they have shown very intriguing biological activities in blocking Aβ-aggregation, tau hyperphosphorylation and neuronal damage. We believe that iron-targeted therapies are a promising direction for the treatment of AD
The genome of broomcorn millet
Broomcorn millet (Panicum miliaceum L.) is the most water-efficient cereal and one of the earliest domesticated plants. Here we report its high-quality, chromosome-scale genome assembly using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. Phylogenetic analyses reveal two sets of homologous chromosomes that may have merged ~5.6 million years ago, both of which exhibit strong synteny with other grass species. Broomcorn millet contains 55,930 proteincoding genes and 339 microRNA genes. We find Paniceae-specific expansion in several subfamilies of the BTB (broad complex/tramtrack/bric-a-brac) subunit of ubiquitin E3 ligases, suggesting enhanced regulation of protein dynamics may have contributed to the evolution of broomcorn millet. In addition, we identify the coexistence of all three C4 subtypes of carbon fixation candidate genes. The genome sequence is a valuable resource for breeders and will provide the foundation for studying the exceptional stress tolerance as well as C4 biology
Identification of Genome-Wide Variations among Three Elite Restorer Lines for Hybrid-Rice
Rice restorer lines play an important role in three-line hybrid rice production. Previous research based on molecular tagging has suggested that the restorer lines used widely today have narrow genetic backgrounds. However, patterns of genetic variation at a genome-wide scale in these restorer lines remain largely unknown. The present study performed re-sequencing and genome-wide variation analysis of three important representative restorer lines, namely, IR24, MH63, and SH527, using the Solexa sequencing technology. With the genomic sequence of the Indica cultivar 9311 as the reference, the following genetic features were identified: 267,383 single-nucleotide polymorphisms (SNPs), 52,847 insertion/deletion polymorphisms (InDels), and 3,286 structural variations (SVs) in the genome of IR24; 288,764 SNPs, 59,658 InDels, and 3,226 SVs in MH63; and 259,862 SNPs, 55,500 InDels, and 3,127 SVs in SH527. Variations between samples were also determined by comparative analysis of authentic collections of SNPs, InDels, and SVs, and were functionally annotated. Furthermore, variations in several important genes were also surveyed by alignment analysis in these lines. Our results suggest that genetic variations among these lines, although far lower than those reported in the landrace population, are greater than expected, indicating a complicated genetic basis for the phenotypic diversity of the restorer lines. Identification of genome-wide variation and pattern analysis among the restorer lines will facilitate future genetic studies and the molecular improvement of hybrid rice
Low-dimensional Materials with Protective Coatings for Applications under Extreme Conditions
Traditional ceramic-based, conductive materials used under extreme conditions are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited infiltration of ceramics inside the VACNT arrays. Hence developing a feasible method to infiltrate ceramics into VACNT arrays is necessary. The following research topics are covered in this dissertation including 1) Thermal CVD growth of ultralong vertically aligned CNTs, 2) CVD growth of h-BN, silicon and gallium nitride thin films 3) Infiltration of Si, GaN and BN into dense VACNT arrays, 4) Defect free coating of 2D materials by sputtering and RTP, 5) Evaluation of thermal stability enhancement of the CNT-ceramic composites. Ultralong vertically aligned CNTs are fabricated using two different methods in this study. The mechanism and kinetics of which are discussed and compared. In addition, different level of infiltration was achieved via different CVD methods. As an example, in laser-assisted CVD, ceramics were quickly deposited at the VACNT subsurfaces/surfaces, resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/ceramic composite structures. Similar levels of infiltration were achieved in the case of boron nitride and silicon, and anisotropic conducting behavior exhibited by CNT-BN was discovered. The mechanism and kinetics of infiltration into VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-fabricated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C) and good high-velocity hot gas erosion resistance. As an extension to the CNT coating techniques, defect generation and removal of 2D materials via sputtering and RTP was studied as well
Boletín Oficial de la Provincia de Guadalajara: Número 10 - 1936 enero 22
Traditional ceramic-based, conductive materials used under extreme conditions are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited infiltration of ceramics inside the VACNT arrays. Hence developing a feasible method to infiltrate ceramics into VACNT arrays is necessary. The following research topics are covered in this dissertation including 1) Thermal CVD growth of ultralong vertically aligned CNTs, 2) CVD growth of h-BN, silicon and gallium nitride thin films 3) Infiltration of Si, GaN and BN into dense VACNT arrays, 4) Defect free coating of 2D materials by sputtering and RTP, 5) Evaluation of thermal stability enhancement of the CNT-ceramic composites. Ultralong vertically aligned CNTs are fabricated using two different methods in this study. The mechanism and kinetics of which are discussed and compared. In addition, different level of infiltration was achieved via different CVD methods. As an example, in laser-assisted CVD, ceramics were quickly deposited at the VACNT subsurfaces/surfaces, resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/ceramic composite structures. Similar levels of infiltration were achieved in the case of boron nitride and silicon, and anisotropic conducting behavior exhibited by CNT-BN was discovered. The mechanism and kinetics of infiltration into VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-fabricated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C) and good high-velocity hot gas erosion resistance. As an extension to the CNT coating techniques, defect generation and removal of 2D materials via sputtering and RTP was studied as well
Low-dimensional Materials with Protective Coatings for Applications under Extreme Conditions
Traditional ceramic-based, conductive materials used under extreme conditions are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited infiltration of ceramics inside the VACNT arrays. Hence developing a feasible method to infiltrate ceramics into VACNT arrays is necessary. The following research topics are covered in this dissertation including 1) Thermal CVD growth of ultralong vertically aligned CNTs, 2) CVD growth of h-BN, silicon and gallium nitride thin films 3) Infiltration of Si, GaN and BN into dense VACNT arrays, 4) Defect free coating of 2D materials by sputtering and RTP, 5) Evaluation of thermal stability enhancement of the CNT-ceramic composites. Ultralong vertically aligned CNTs are fabricated using two different methods in this study. The mechanism and kinetics of which are discussed and compared. In addition, different level of infiltration was achieved via different CVD methods. As an example, in laser-assisted CVD, ceramics were quickly deposited at the VACNT subsurfaces/surfaces, resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/ceramic composite structures. Similar levels of infiltration were achieved in the case of boron nitride and silicon, and anisotropic conducting behavior exhibited by CNT-BN was discovered. The mechanism and kinetics of infiltration into VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-fabricated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C) and good high-velocity hot gas erosion resistance. As an extension to the CNT coating techniques, defect generation and removal of 2D materials via sputtering and RTP was studied as well
High-Accuracy and Fast Calculation Framework for Berthing Collision Force of Docks Based on Surrogate Models
The accurate prediction of the collision force magnitude resulting from ship berthing on docks is crucial for the rationality and safety of dock structural design. This paper presents a novel framework for the calculation of berthing collision force for ships (CBCF), which integrates field data, finite element models, and surrogate models. Based on field data and finite element analysis, the framework constructs and compares four surrogate models with low sample requirements, ultimately selecting the optimal surrogate model for predicting collision force. Furthermore, a sensitivity analysis of the parameters is conducted based on the selected model, followed by a comparison with the various methods used for collision force prediction. The results illustrate the effectiveness of the proposed framework in replacing finite element models for the rapid and accurate prediction of collision force. Comparison with existing methods also underscores the advantages of the proposed framework, including low sample requirements, high calculation accuracy, and exceptional efficiency. In summary, this study not only introduces a novel and precise surrogate model framework for the swift prediction of berthing collision force, but it also offers valuable insights into the prevention of ship collision with wharf accidents and facilitates the rational and safe design of wharf structures
- …