25,860 research outputs found

    Total embedding distributions of Ringel ladders

    Get PDF
    The total embedding distributions of a graph is consisted of the orientable embeddings and non- orientable embeddings and have been know for few classes of graphs. The genus distribution of Ringel ladders is determined in [Discrete Mathematics 216 (2000) 235-252] by E.H. Tesar. In this paper, the explicit formula for non-orientable embeddings of Ringel ladders is obtained

    Detecting Floating-Point Errors via Atomic Conditions

    Get PDF
    This paper tackles the important, difficult problem of detecting program inputs that trigger large floating-point errors in numerical code. It introduces a novel, principled dynamic analysis that leverages the mathematically rigorously analyzed condition numbers for atomic numerical operations, which we call atomic conditions, to effectively guide the search for large floating-point errors. Compared with existing approaches, our work based on atomic conditions has several distinctive benefits: (1) it does not rely on high-precision implementations to act as approximate oracles, which are difficult to obtain in general and computationally costly; and (2) atomic conditions provide accurate, modular search guidance. These benefits in combination lead to a highly effective approach that detects more significant errors in real-world code (e.g., widely-used numerical library functions) and achieves several orders of speedups over the state-of-the-art, thus making error analysis significantly more practical. We expect the methodology and principles behind our approach to benefit other floating-point program analysis tasks such as debugging, repair and synthesis. To facilitate the reproduction of our work, we have made our implementation, evaluation data and results publicly available on GitHub at https://github.com/FP-Analysis/atomic-condition.ISSN:2475-142

    Heavy Quark Spin Symmetry Violating Hadronic Transitions of Higher Charmonia

    Full text link
    In heavy quarkonia, hadronic transitions serve as an enlightened probe for the structure and help to establish the understanding of light quark coupling with a heavy degree of freedom. Moreover, in recent years, hadronic transitions revealed remarkable discoveries to identify the new conventional heavy quarkonia and extracting useful information about the so called "XYZ" exotic states. In this contribution, we present our predictions for heavy quark spin symmetry (HQSS) breaking hadronic transitions of higher SS and DD wave vector charmonia based on our recently proposed model (inspired by Nambu-Jona-Lasinio (NJL) model) to create light meson(s) in heavy quarkonium transitions. We also suggest spectroscopic quantum numbers (2S+1LJ)(^{2S+1}L_J) for several observed charmoniumlike states. Our analysis indicates that the Y(4360)Y(4360) is most likely to be a 3D3D dominant state.Comment: Proceedings of the talk presented at "XVII International Conference on Hadron Spectroscopy and Structure (Hadron2017)", 25-29 September 2017, Salamanca, Spai
    • …
    corecore