59 research outputs found
Recommended from our members
A reference human induced pluripotent stem cell line for large-scale collaborative studies.
Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field
A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors
BACKGROUND: Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. RESULT: We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. CONCLUSIONS: Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users
Multi-time-scale robust economic dispatching method for the power system with clean energy
Clean energies such as wind energy and solar energy have increased very fast in order to meet the environmental requirements. However, due to the uncertainties of wind and solar energy, the large-scale integration of new energy presents a great challenge to the power system economic dispatch. Thus, a multi-time-scale robust economic dispatch strategy of a multi-source hybrid power system based on the variable confidence level is proposed. The deterministic constraints of each time scale are transformed into robust constraints that take the uncertainty into account. Meanwhile, the robust level whose confidence level increases with the shortening of time scale is set to improve the scheduling conservative degree step by step. The selection principle of the robust level of each time scale is also presented. The proposed approach is applied to an IEEE 9-bus system. The calculation results are compared with those from the traditional multi-time scheduling method and show the effectiveness of the paper, which can reduce the uncertainty impact of wind, solar, and load forecast, as well as achieve a great balance of security, economic, and environmental benefits
Three induced pluripotent stem cell lines (TRNDi033-A, TRNDi034-A, TRNDi035-A) generated from lymphoblasts of three apparently healthy individuals
Expanded human lymphoblast cells from three different aged healthy individuals, 8-year-old male, 0-year-old newborn (NB) male, and 26-year-old female, were used to generate induced pluripotent stem cell (iPSC) lines TRNDi033-A, TRNDi034-A and TRNDi035-A, respectively, by exogenous expression of five reprogramming factors, human OCT4, SOX2, KLF4, L-MYC and LIN28. The authenticity of established iPSC lines was confirmed by the expressions of stem cell markers, karyotype analysis, embryoid body formation, and scorecard analysis. These iPSC lines could serve as healthy donor controls that are age and sex matched for the studies involving patient-specific iPSCs
Generation of an induced pluripotent stem cell line (TRNDi005-A) from a Mucopolysaccharidosis Type IVA (MPS IVA) patient carrying compound heterozygous p.R61W and p.WT405del mutations in the GALNS gene
Mucopolysaccharidosis type IVA (MPS IVA) is a rare genetic disease caused by mutations in the GALNS gene and is inherited in an autosomal recessive manner. GALNS encodes N-acetylgalactosamine-6-sulfatase that breaks down certain complex carbohydrates known as glycosaminoglycans (GAGs). Deficiency in this enzyme causes accumulation of GAGs in lysosomes of body tissues. A human induced pluripotent stem cell (iPSC) line was generated from dermal fibroblasts of a MPS IVA patient that has compound heterozygous mutations (p.R61W and p.WT405del) in the GALNS gene. This iPSC line offers a useful resource to study the disease pathophysiology and a cell-based model for drug development
Generation of an induced pluripotent stem cell line (TRNDi012-B) from Fibrodysplasia Ossificans Progressiva (FOP) patient carrying a heterozygous mutation c. 617G > A in the ACVR1 gene
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of progressive ossification of skeletal muscle, fascia, tendons, and ligaments. Most FOP cases are caused by a heterozygous c. 617G > A mutation in the ACVR1 gene which encodes a gain-of-function of bone morphogenetic protein type I receptor. A human induced pluripotent stem cell (iPSC) line was generated from the dermal skin fibroblasts of a FOP patient who carries the c. 617G > A mutation in the ACVR1 gene. This iPSC line provides an attractive resource for FOP disease modeling
- …