54 research outputs found

    Metabolic Syndrome Associated Kidney Damage

    Get PDF

    Expression of GSK-3β in renal allograft tissue and its significance in pathogenesis of chronic allograft dysfunction

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To explore the expression of Glycogen synthase kinase 3 beta (GSK-3β) in renal allograft tissue and its significance in the pathogenesis of chronic allograft dysfunction.</p> <p>Methods</p> <p>Renal allograft biopsy was performed in all of the renal allograft recipients with proteinuria or increased serum creatinine level who came into our hospital from January 2007 to December 2009. Among them 28 cases was diagnosed as chronic allograft dysfunction based on pahtological observation, including 21 males with a mean age of 45 ± 10 years old and 7 females with a mean age of 42 ± 9 years old. The time from kidney transplantation to biopsy were 1-9 (3.5) years. Their serum creatinine level were 206 ± 122 umol/L. Immunohistochemical assay and computer-assisted genuine color image analysis system (imagepro-plus 6.0) were used to detect the expression of GSK-3β in the renal allografts of 28 cases of recipients with chronic allograft dysfunction. Mean area and mean integrated optical density of GSK-3β expression were calculated. The relationship between expression level of GSK-3β and either the grade of inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft was analyzed. Five specimens of healthy renal tissue were used as controls.</p> <p>Results</p> <p>The expression level of the GSK-3β was significantly increased in the renal allograft tissue of recipients with chronic allograft dysfunction, compared to normal renal tissues, and GSK-3β expression became stronger along with the increasing of the grade of either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft tissue.</p> <p>Conclusion</p> <p>There might be a positive correlation between either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy and high GSK-3β expression in renal allograft tissue.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here:</p> <p><url>http://www.diagnosticpathology.diagnomx.eu/vs/9924478946162998</url>.</p

    Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway

    Get PDF
    Background. Oxidative stress plays an important role in the pathogenesis of contrast-induced nephropathy (CIN). The aim of this study was to investigate the antioxidant effects of sulforaphane (SFN) in a rat model of CIN and a cell model of oxidative stress in HK2 cells. Methods. Rats were randomized into four groups (n=6 per group): control group, Ioversol group (Ioversol-induced CIN), Ioversol + SFN group (CIN rats pretreated with SFN), and SFN group (rats treated with SFN). Renal function tests, malondialdehyde (MDA), and reactive oxygen species (ROS) were measured. Western blot, real-time polymerase chain reaction analysis, and immunohistochemical analysis were performed for nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) detection. Results. Serum blood urea nitrogen (BUN), creatinine, and renal tissue MDA were increased after contrast exposure. Serum BUN, creatinine, and renal tissue MDA were decreased in the Ioversol + SFN group as compared with those in the Ioversol group. SFN increased the expression of Nrf2 and HO-1 in CIN rats and in Ioversol-induced injury HK2 cells. SFN increased cell viability and attenuated ROS level in vitro. Conclusions. SFN attenuates experimental CIN in vitro and in vivo. This effect is suggested to activate the Nrf2 antioxidant defenses pathway

    Diabetes with kidney injury may change the abundance and cargo of urinary extracellular vesicles

    Get PDF
    BackgroundUrinary extracellular vesicles (uEVs) are derived from epithelia facing the renal tubule lumen in the kidney and urogenital tract; they may carry protein biomarkers of renal dysfunction and structural injury. However, there are scarce studies focusing on uEVs in diabetes with kidney injury.Materials and methodsA community-based epidemiological survey was performed, and the participants were randomly selected for our study. uEVs were enriched by dehydrated dialysis method, quantified by Coomassie Bradford protein assay, and adjusted by urinary creatinine (UCr). Then, they identified by transmission electron microscopy (TEM), nanoparticle track analysis (NTA), and western blot of tumor susceptibility gene 101.ResultsDecent uEVs with a homogeneous distribution were finally obtained, presenting a membrane-encapsulated structure like cup-shaped or roundish under TEM, having active Brownian motion, and presenting the main peak between 55 and 110 nm under NTA. The Bradford protein assay showed that the protein concentrations of uEVs were 0.02 ± 0.02, 0.04 ± 0.05, 0.05 ± 0.04, 0.07 ± 0.08, and 0.11 ± 0.15 μg/mg UCr, respectively, in normal controls and in prediabetes, diabetes with normal proteinuria, diabetes with microalbuminuria, and diabetes with macroproteinuria groups after adjusting the protein concentration with UCr by calculating the vesicles-to-creatinine ratio.ConclusionThe protein concentration of uEVs in diabetes with kidney injury increased significantly than the normal controls before and after adjusting the UCr. Therefore, diabetes with kidney injury may change the abundance and cargo of uEVs, which may be involved in the physiological and pathological changes of diabetes

    Management of Tamm-Horsfall Protein for Reliable Urinary Analytics

    Get PDF
    Purpose Urinary extracellular vesicles (uEVs) are a novel source of biomarkers. However, urinary Tamm-Horsfall Protein (THP; uromodulin) interferes with all vesicle isolation attempts, precipitates with normal urinary proteins, thus, representing an unwanted "contaminant" in urinary assays. Thus, the aim is to develop a simple method to manage THP efficiently. Experimental design The uEVs are isolated by hydrostatic filtration dialysis (HFD) and treated with a defined solution of urea to optimize release of uEVs from sample. Presence of uEVs is confirmed by transmission electron microscopy, Western blotting, and proteomic profiling in MS. Results Using HFD with urea treatment for uEV isolation reduces sample complexity to a great extent. The novel simplified uEV isolation protocol allows comprehensive vesicle proteomics analysis and should be part of any urine analytics to release all sample constituents from THP trap. Conclusions and clinical relevance The method brings a quick and easy protocol for THP management during uEV isolation, providing major benefits for comprehensive sample analytics.Peer reviewe

    Delivery Efficiency of miR-21i-CPP-SWCNT and Its Inhibitory Effect on Fibrosis of the Renal Mesangial Cells

    Get PDF
    MicroRNA 21 (miR-21) was proved to cause renal fibrosis and the inhibition of miR-21 would improve the poor prognosis in renal cell carcinoma diseases. The complementary oligonucleotide of mature miR-21 was considered to be an effective intracellular miR-21 inhibitor (miR-21i). The directly effective delivery of miR-21i into fibrotic cell is a facile method for treatment of renal fibrosis. Herein, the miR-21i-CPP-SWCNT delivery system, synthesized via single-walled carbon nanotube (SWCNT) and cell-penetrating peptide (CPP), was taken as a novel fibrosis-targeting therapeutic carrier. The miR-21i and CPP firstly bind together via electrostatic forces, and subsequently miR-21i-CPP binds to the surface of SWCNTs via hydrophobic forces. CPP could endow the delivery system with targeting property, while SWCNT would enhance its penetrating ability. The exogenous miR-21i released from the designed miR-21i-CPP-SWCNTs had successfully inhibited the expression of fibrosis-related proteins in renal mesangial cells (RMCs). We found that the expression of TGF-β1 proteins was more sensitive to miR-21i-CPP-SWCNT than the expression of α-SMA proteins

    The negative effects of obesity on heart, especially the electrophysiology of the heart

    No full text
    AbstractObesity is associated with ventricular arrhythmia and sudden cardiac death. Numerous studies have shown that obesity may have effects on the heart by affecting the ventricular re-polarisation (VR). As an effective detection method for VR the measurement of the QT interval has been extensively studied in obese patients (OP). This review aims to investigate the relationship between obesity and obesity-related diseases; including diabetes, hypertension and cardiovascular diseases (CVD). This review compares the advantages and disadvantages of different QT interval measurement methods, as well as explores the possible mechanisms of obesity leading to heart disease. Finally, it also reviews the feasibility of various weight loss methods to reverse the risk of obesity leading to heart disease is discussed

    Association of C-Reactive Protein and Metabolic Disorder in a Chinese Population

    No full text
    Objective: To assess the high-sensitivity C-reactive protein (hs-CRP) levels and explore the risk factors for an elevated hs-CRP level. We also provide the clinical utility of CRP to identify subjects with metabolic syndrome (MetS). Methods: Data were drawn from a cross-sectional survey in China. Subjects were divided into three subgroups: hs-CRP ≤ 1 mg/L, 1 mg/L &lt; hs-CRP ≤ 3 mg/L and hs-CRP &gt; 3 mg/L. Multiple linear regressions and logistic regression models were used. Results: In the Chinese population, 50.43% subjects had a low hs-CRP level, 30.21% subjects had an intermediate hs-CRP level and 19.36% subjects had an elevated hs-CRP level. Age, physical inactivity, abdominal obesity, a low LDL level, an elevated fasting glucose level, uric acid and urinary albumin to creatinine ratio (ACR) were correlated with log-CRP. In multivariate analysis, relative risks of an elevated CRP level were 2.40 (95% CI 1.44–3.99, p = 0.001), 3.63 (95% CI 2.20–5.98, p &lt; 0.001), 4.23 (95% CI 2.51–7.11, p &lt; 0.001) and 6.23 (95% CI 3.45–11.26, p &lt; 0.001) for subjects with 1, 2, 3, or more than 3 MetS components, respectively. The accurate estimates of the area under the receiver operating characteristic of hs-CRP for MetS was 0.6954 (95% CI, 0.67–0.72). Conclusion: Age, physical inactivity, abdominal obesity, a low LDL level, an elevated fasting glucose level, uric acid and ACR are correlated with log-CRP. The number of MetS components is a significant determinant of elevated CRP levels after adjusted for other potential confounders

    The Association Between Oxidative Stress Alleviation via Sulforaphane-Induced Nrf2-HO-1/NQO-1 Signaling Pathway Activation and Chronic Renal Allograft Dysfunction Improvement

    No full text
    Background/Aims: Chronic renal allograft dysfunction (CRAD) is a leading cause of long-term renal allograft loss. Oxidative stress may account for the nonspecific interstitial fibrosis and tubular atrophy that occur in CRAD. An antioxidant intervention via Nrf2 signaling pathway activation might be a promising therapy for some kidney diseases. The present paper investigates whether there is an association between oxidative stress alleviation via sulforaphane-induced Nrf2-HO-1/NQO-1 signaling pathway activation and CRAD improvement. Methods: F344 rat kidneys were orthotopically transplanted into Lewis rat recipients to establish CRAD models. Sulforaphane was administered at 1.5 mg/kg intraperitoneally once daily. Renal function and 24-hour urinary protein were monitored for variations for 24 weeks after transplantation. After 24 weeks, renal histopathology was evaluated according to the Banff criteria after hematoxylin and eosin, Masson’s trichrome and periodic acid-Schiff stainings. Additionally, intrarenal oxidative stress was assessed by the indicators malondialdehyde, 8-isoprostane, oxidized-low density lipoprotein and 8-hydroxy-2’-deoxyguanosine, as well as the activity levels of the antioxidant enzymes total superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and γ-glutamylcysteine synthetase. Nrf2, HO-1 and NQO-1 expression levels were determined via immunohistochemical and Western blot analyses. Results: The sulforaphane-induced Nrf2-HO-1/NQO-1 signaling pathway activation, as demonstrated by immunohistochemical and Western blot analyses, delayed the progression of serum creatinine and blood urea nitrogen, particularly lowering the 24-hour urinary protein levels of CRAD. The semi-quantified histopathological changes were also alleviated. Evidence of oxidative stress alleviation, as indicated by a concurrent decrease in the indicators and sustained levels of antioxidant enzymes activity, was found in the renal allografts after sulforaphane intervention. Conclusion: Oxidative stress alleviation caused by continuous sulforaphane-induced Nrf2-HO-1/NQO-1 signaling pathway activation is associated with functional and morphological improvements of CRAD
    • …
    corecore