8 research outputs found

    An Authentication and Secure Communication Scheme for In-Vehicle Networks Based on SOME/IP

    No full text
    The rapid development of intelligent networked vehicles (ICVs) has brought many positive effects. Unfortunately, connecting to the outside exposes ICVs to security threats. Using secure protocols is an important approach to protect ICVs from hacker attacks and has become a hot research area for vehicle security. However, most of the previous studies were carried out on V2X networks, while those on in-vehicle networks (IVNs) did not involve Ethernet. To this end, oriented to the new IVNs based on Ethernet, we designed an efficient secure scheme, including an authentication scheme using the Scalable Service-Oriented Middleware over IP (SOME/IP) protocol and a secure communication scheme modifying the payload field of the original SOME/IP data frame. The security analysis shows that the designed authentication scheme can provide mutual identity authentication for communicating parties and ensure the confidentiality of the issued temporary session key; the designed authentication and secure communication scheme can resist the common malicious attacks conjointly. The performance experiments based on embedded devices show that the additional overhead introduced by the secure scheme is very limited. The secure scheme proposed in this article can promote the popularization of the SOME/IP protocol in IVNs and contribute to the secure communication of IVNs

    Design of a CANFD to SOME/IP Gateway Considering Security for In-Vehicle Networks

    No full text
    In recent years, Ethernet has been introduced into vehicular networks to cope with the increasing demand for bandwidth and complexity in communication networks. To exchange data between controller area network (CAN) and Ethernet, a gateway system is required to provide a communication interface. Additionally, the existence of networked devices exposes automobiles to cyber security threats. Against this background, a gateway for CAN/CAN with flexible data-rate (CANFD) to scalable service-oriented middleware over IP (SOME/IP) protocol conversion is designed, and security schemes are implemented in the routing process to provide integrity and confidentiality protections. Based on NXP-S32G, the designed gateway is implemented and evaluated. Under most operating conditions, the CPU and the RAM usage are less than 5% and 20 MB, respectively. Devices running a Linux operating system can easily bear such a system resource overhead. The latency caused by the security scheme accounts for about 25% of the entire protocol conversion latency. Considering the security protection provided by the security scheme, this overhead is worthwhile. The results show that the designed gateway can ensure a CAN/CANFD to SOME/IP protocol conversion with a low system resource overhead and a low latency while effectively resisting hacker attacks such as frame forgery, tampering, and sniffing

    Lithium-Ion Battery State of Health Estimation with Multi-Feature Collaborative Analysis and Deep Learning Method

    No full text
    The accurate estimation of the battery state of health (SOH) is crucial for the dependability and safety of battery management systems (BMS). The generality of existing SOH estimation methods is limited as they tend to primarily consider information from single-source features. Therefore, a novel method for integrating multi-feature collaborative analysis with deep learning-based approaches is proposed in this research. First, several battery degradation features are obtained through differential thermal voltammetry (DTV) analysis, singular value decomposition (SVD), incremental capacity analysis (ICA), and terminal voltage characteristic (TVC) analysis. The features highly related to SOH are selected as inputs for the deep learning model based on the results of a Pearson correlation analysis. The SOH estimation is achieved by developing a deep learning framework cored by long short-term memory (LSTM) neural network (NN), which integrates multi-source features as an input. A suggested method is validated using NASA and Oxford Battery Degradation datasets. The results demonstrate that the presented model provides great SOH estimation accuracy and generality, where the maximum root mean square error (RMSE) is less than 1%. Based on a cloud computing platform, the proposed method can be applied to provide a real-time prediction of battery health, with the potential to enhance battery full lifespan management

    End-Cloud Collaboration Approach for State-of-Charge Estimation in Lithium Batteries Using CNN-LSTM and UKF

    No full text
    The accurate estimation of the state of charge (SOC) plays a crucial role in ensuring the range of electric vehicles (EVs) and the reliability of the EVs battery. However, due to the dynamic working conditions in the implementation of EVs and the limitation of the onboard BMS computational force, it is challenging to achieve a reliable, high-accuracy and real-time online battery SOC estimation under diverse working scenarios. Therefore, this study proposes an end-cloud collaboration approach of lithium-ion batteries online estimate SOC. On the cloud-side, a deep learning model constructed based on CNN-LSTM is deployed, and on the end-side, the coulomb counting method and Kalman’s filter are deployed. The estimation results at both sides are fused through the Kalman filtering algorithm, realizing high-accuracy and real-time online estimation of SOC. The proposed approach is evaluated with three dynamic driving profiles and the results demonstrate the proposed approach has high accuracy under different temperatures and initial errors, where the root means square error (RMSE) is lower than 1.5% and the maximum error is lower than 5%. Furthermore, this method could achieve high-accuracy and real-time SOC online estimation under the cyber hierarchy and interactional network (CHAIN) framework and can be extended to multi-state collaborative online estimation

    Lithium-Ion Battery State of Health Estimation with Multi-Feature Collaborative Analysis and Deep Learning Method

    No full text
    The accurate estimation of the battery state of health (SOH) is crucial for the dependability and safety of battery management systems (BMS). The generality of existing SOH estimation methods is limited as they tend to primarily consider information from single-source features. Therefore, a novel method for integrating multi-feature collaborative analysis with deep learning-based approaches is proposed in this research. First, several battery degradation features are obtained through differential thermal voltammetry (DTV) analysis, singular value decomposition (SVD), incremental capacity analysis (ICA), and terminal voltage characteristic (TVC) analysis. The features highly related to SOH are selected as inputs for the deep learning model based on the results of a Pearson correlation analysis. The SOH estimation is achieved by developing a deep learning framework cored by long short-term memory (LSTM) neural network (NN), which integrates multi-source features as an input. A suggested method is validated using NASA and Oxford Battery Degradation datasets. The results demonstrate that the presented model provides great SOH estimation accuracy and generality, where the maximum root mean square error (RMSE) is less than 1%. Based on a cloud computing platform, the proposed method can be applied to provide a real-time prediction of battery health, with the potential to enhance battery full lifespan management

    End-Cloud Collaboration Approach for State-of-Charge Estimation in Lithium Batteries Using CNN-LSTM and UKF

    No full text
    The accurate estimation of the state of charge (SOC) plays a crucial role in ensuring the range of electric vehicles (EVs) and the reliability of the EVs battery. However, due to the dynamic working conditions in the implementation of EVs and the limitation of the onboard BMS computational force, it is challenging to achieve a reliable, high-accuracy and real-time online battery SOC estimation under diverse working scenarios. Therefore, this study proposes an end-cloud collaboration approach of lithium-ion batteries online estimate SOC. On the cloud-side, a deep learning model constructed based on CNN-LSTM is deployed, and on the end-side, the coulomb counting method and Kalman’s filter are deployed. The estimation results at both sides are fused through the Kalman filtering algorithm, realizing high-accuracy and real-time online estimation of SOC. The proposed approach is evaluated with three dynamic driving profiles and the results demonstrate the proposed approach has high accuracy under different temperatures and initial errors, where the root means square error (RMSE) is lower than 1.5% and the maximum error is lower than 5%. Furthermore, this method could achieve high-accuracy and real-time SOC online estimation under the cyber hierarchy and interactional network (CHAIN) framework and can be extended to multi-state collaborative online estimation

    A Deep Learning Approach for State-of-Health Estimation of Lithium-Ion Batteries Based on a Multi-Feature and Attention Mechanism Collaboration

    No full text
    Safety issues are one of the main limitations for further application of lithium-ion batteries, and battery degradation is an important causative factor. However, current state-of-health (SOH) estimation methods are mostly developed for a single feature and a single operating condition as well as a single battery material system, which consequently makes it difficult to guarantee robustness and generalization. This paper proposes a data-driven and multi-feature collaborative SOH estimation method based on equal voltage interval discharge time, incremental capacity (IC) and differential thermal voltammetry (DTV) analysis for feature extraction. The deep learning model is constructed based on bi-directional long short-term memory (Bi-LSTM) with the addition of attention mechanism (AM) to focus on the important parts of the features. The proposed method is validated based on a NASA dataset and Oxford University dataset, and the results show that the proposed method has high accuracy and strong robustness. The estimated root mean squared error (RMSE) are below 0.7% and 0.3%, respectively. Compared to single features, the collaboration between multiple features and AM resulted in a 25% error improvement, and the capacity rebound is well captured. The proposed method has the potential to be applied online in an end-cloud collaboration system
    corecore