5 research outputs found

    Stability and stabilization for Markovian jump time-delay systems with partially unknown transition rates

    Get PDF
    This paper focuses on the stability analysis and controller synthesis of continuous-time Markovian jump time-delay systems with incomplete transition rate descriptions. A general stability criterion is formulated first for state- and input-delay Markovian jump time-delay systems with fully known transition rates. On the basis of the proposed condition, an equivalent condition is given under the assumption of partly known/unknown transition rates. A new design technique based on a projection inequality has been applied to design both state feedback and static output feedback controllers. All conditions can be readily verified by efficient algorithms. Finally, illustrative examples are provided to show the effectiveness of the proposed approach

    Denoising for 3D Point Cloud Based on Regularization of a Statistical Low-Dimensional Manifold

    No full text
    A point cloud obtained by stereo matching algorithm or three-dimensional (3D) scanner generally contains much complex noise, which will affect the accuracy of subsequent surface reconstruction or visualization processing. To eliminate the complex noise, a new regularization algorithm for denoising was proposed. In view of the fact that 3D point clouds have low-dimensional structures, a statistical low-dimensional manifold (SLDM) model was established. By regularizing its dimensions, the denoising problem of the point cloud was expressed as an optimization problem based on the geometric constraints of the regularization term of the manifold. A low-dimensional smooth manifold model was constructed by discrete sampling, and solved by means of a statistical method and an alternating iterative method. The performance of the denoising algorithm was quantitatively evaluated from three aspects, i.e., the signal-to-noise ratio (SNR), mean square error (MSE) and structural similarity (SSIM). Analysis and comparison of performance showed that compared with the algebraic point-set surface (APSS), non-local denoising (NLD) and feature graph learning (FGL) algorithms, the mean SNR of the point cloud denoised using the proposed method increased by 1.22 DB, 1.81 DB and 1.20 DB, respectively, its mean MSE decreased by 0.096, 0.086 and 0.076, respectively, and its mean SSIM decreased by 0.023, 0.022 and 0.020, respectively, which shows that the proposed method is more effective in eliminating Gaussian noise and Laplace noise in common point clouds. The application cases showed that the proposed algorithm can retain the geometric feature information of point clouds while eliminating complex noise

    NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results

    Full text link
    This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2022. This manuscript focuses on the competition set-up, datasets, the proposed methods and their results. The challenge aims at estimating an HDR image from multiple respective low dynamic range (LDR) observations, which might suffer from under- or over-exposed regions and different sources of noise. The challenge is composed of two tracks with an emphasis on fidelity and complexity constraints: In Track 1, participants are asked to optimize objective fidelity scores while imposing a low-complexity constraint (i.e. solutions can not exceed a given number of operations). In Track 2, participants are asked to minimize the complexity of their solutions while imposing a constraint on fidelity scores (i.e. solutions are required to obtain a higher fidelity score than the prescribed baseline). Both tracks use the same data and metrics: Fidelity is measured by means of PSNR with respect to a ground-truth HDR image (computed both directly and with a canonical tonemapping operation), while complexity metrics include the number of Multiply-Accumulate (MAC) operations and runtime (in seconds).Comment: CVPR Workshops 2022. 15 pages, 21 figures, 2 table
    corecore