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Stability and Stabilization for Markovian Jump
Time-Delay Systems With Partially Unknown

Transition Rates
Baozhu Du, James Lam, Fellow, IEEE, Yun Zou, and Zhan Shu, Member, IEEE

Abstract—This paper focuses on the stability analysis and con-
troller synthesis of continuous-time Markovian jump time-delay
systemswith incomplete transition rate descriptions. A general sta-
bility criterion is formulated first for state- and input-delay Mar-
kovian jump time-delay systems with fully known transition rates.
On the basis of the proposed condition, an equivalent condition is
given under the assumption of partly known/unknown transition
rates. A new design technique based on a projection inequality has
been applied to design both state feedback and static output feed-
back controllers. All conditions can be readily verified by efficient
algorithms. Finally, illustrative examples are provided to show the
effectiveness of the proposed approach.

Index Terms—Time-delay system, Markovian jump linear
system, stability, stabilization, state/output feedback.

I. INTRODUCTION

I NITIALLY introduced by Krasovskii and Lidskii in 1961
[1], Markovian jump linear systems (MJLSs) combine

a part of the state which takes values continuously and the
other part of the state which takes values discretely. They
represent a special class of hybrid systems with many oper-
ation modes and each mode corresponds to a deterministic
dynamic system. The switching amongst the system modes
is governed by a Markov process which takes values in a
finite set. Markovian jump time-delay systems (MJTDSs) are
often used to model dynamic systems whose structures are
subject to abrupt changes and their extensive applications have
been applied to many physical systems with time delay, such
as communication systems, manufacturing systems, aircraft
control, target tracking, robotics, solar receiver control, neural
networks, and power systems (see [2]–[8] and references cited
therein). When the estimation and control problems related
to such systems are of major concern in control systems, the
issues of robust stability and robust stabilization of MJTDSs
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have attracted much attention (see [9]–[11]). In most studies
of MJTDSs, uncertainties always affect the plant models in
which the external disturbance is modeled as a nonlinear func-
tion [12], [13] or polytopic/norm-bounded uncertainties are
introduced into system matrices with full knowledge of their
bounds or structures [14]–[17]. All the transition rates in the
corresponding Markov jumping process, as a crucial factor, are
assumed to be completely accessible. In practice, incomplete
transition probabilities of the corresponding Markov chain
are often encountered especially if adequate samples of the
transitions are costly or time-consuming to obtain. In such
a case, delay-free MJLSs with uncertain transition proba-
bilities have been studied in [18], [19], in which the robust
methodologies were adopted to cope with some compact sets
with polytopic-type or norm-bounded structure in the transi-
tion probabilities matrix. To relax the assumption that all the
transition rates are known completely, a new concept with par-
tially known transition probabilities was proposed [20], [21],
[23]–[25] for continuous-time/descrete-time Markovian jump
delay-free systems, in which the information of some elements
in the stationary transition rate matrix is completely unknown.
Typical controller synthesis of MJTDSs is concerned with

stochastic stabilization, whereas from the point of practical
application the stabilization problem is more significant. Sun
et al. developed sufficient conditions of the robust stochastic
stabilization for uncertain MJLSs with input delay and de-
signed memory controllers in [26]. For a class of uncertain
MJLSs with (multiple) delays in both state and input signals,
and delay-dependent robust stochastic stability analysis and
controller synthesis were focused on in [28] under the assump-
tion that the delays are constant and unknown but with known
upper bounds. Unfortunately, these results are only applicable
to systems whose mode transition rates are completely known
when no information of the upper bound of the time delay is
known in advance. Little work has been devoted to synthesis
of MJLSs with state and input delays, especially the case of
MJLSs with partially unknown transition rates. Delay-inde-
pendent and mode-dependent stabilization and guaranteed cost
control via the dynamic output feedback controllers have been
designed [29]. Delay-dependent output feedback stabilization
for MJTDSs was obtained in [9], and the proof of the main
results contained an error which was indicated in [30]. Hence,
it still remains a challenge to investigate the analysis and
synthesis of MJTDSs with partially known transition rates by
state or output feedback control.
This paper is concerned with the study of the analysis and

synthesis problems of MJTDSs with incomplete description of
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their transition rates, both of the state feedback and the output
feedback. The rest of this paper is arranged as follows. A general
stability criterion is formulated in Section 2 for state- and input-
delay MJLSs with fully known transition rates. In Section 3,
an equivalent form of the stability criterion is given in terms of
LMIs under the assumption of partly known/unknown transition
rates. In Section 4, the output feedback stabilizability analysis
is developed. Illustrative examples are provided in Section 5 to
show the effectiveness of the method.
Notation: The notations in this paper are standard.

Throughout this paper, let be the set of natural numbers;
be the set of real numbers; denotes the -dimensional

Euclidean space; is the set of matrices for which
all entries belong to . The standard vector norm in will
be denoted by . The matrix norm is the operator norm
induced by the standard vector norm and will be denoted by the
same notation . is a complete probability space,
where is the space of elementary events, is a -field and
is the probability measure, satisfying the conditions that it is

right continuous and contains all -null sets. For real sym-
metric matrices and , the notation (respectively,

) means that the matrix is positive semi-definite
(respectively, positive definite). 0 is a null matrix and is the
identity matrix with an appropriate dimension. The superscript
“ ” represents the transpose of the matrix and the asterisk “ ”
in a matrix stands the term which is induced by symmetry.

denotes a matrix column with blocks given by the
matrices in . A block diagonal matrix with diagonal blocks

will be denoted by .
For any matrix denotes a diagonal block
matrix in which the first matrix block is and the remaining
blocks are zeros, that is, . Matrices, if
their dimensions are not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

II. PRELIMINARIES

Consider the following MJLS with a constant delay in the
state and the input, which is defined on a complete probability
space :

where is the state vector, is the con-
trol input and is the measurement output. is
a homogeneous finite state Markov process with right contin-
uous trajectories, which takes values in a finite state space

with generator .
The mode transition probabilities are given as

(1)

where , and . Here,
denote the switching rate from mode to

mode , and for all . For each
, the system matrices of the th mode are denoted by

which are known real constant matrices

representing the nominal system. The constant delay satisfies
where is an upper bound of .

Furthermore, when the transition rates in of the Markov
process are considered to be partially accessible, that is, some
elements in are unknown, for notational clarity, we denote the
set with

and

throughout the paper. Some definitions and useful lemmas on
time-delay system properties are provided for subsequent tech-
nical development of the paper.
Definition 1 (Orthogonal Complement Matrix): For a full

row (column) rankmatrix (possibly non-unique) is called
the right (left) orthogonal complement of , if the matrix
is of maximum column (row) rank and satisfies and

( and ).
Definition 2 (Stochastic Stability): [31] MJTDS with input

is said to be stochastically stable if, for the finite
defined on and all initial mode , the

following is satisfied

where denotes the solution to the considered system
at time under the initial conditions and .
Lemma 1 (Finsler’s Lemma): [32], [33] Consider real ma-

trices and such that and has
full row rank. Then the following statements are equivalent:
1) There exists a nonzero vector such that

and ;
2) There exists a scalar such that ;
3) The following condition holds: .
Lemma 2: [34], [33] Consider matrices , and

suppose that , and that and have full column
and full row rank, respectively. Then there exists a matrix
satisfying the following matrix inequality:

if and only if the following two conditions hold:

In previous analysis of MJTDSs, it is often assumed that all
the transition rates of the jumping process are completely
accessible (that is, ). Moreover, the transi-
tion rates with polytopic-type or norm-bounded uncertainties
require the knowledge of bounds or structure of uncertainties,
which can still be viewed as accessible transition rate knowl-
edge. Therefore, our assumption on the transition rate matrix
is more natural for MJTDSs.
A sufficient condition for the stability analysis of MJTDSs

with complete description of transition rates is proposed first
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before presenting the main results as follows, which will be used
in the sequel.
Theorem 1: MJTDS with and fully known tran-

sition rates is stochastically stable for any delay if
there exist matrices such that the fol-
lowing LMIs hold for ,

where is the orthogonal complement of the matrix

and

Proof: Denote since it is a function of . Note
that is not a Markov process in the under-
lying system . To cast the model involved into the framework
of the Markov processes, we define a new process
by

Then, similar to [29], we can verify that is a
Markov process with an initial state . Now, define a
stochastic Lyapunov-Krasovskii functional for system as

where for . Let be the weak infinitesimal
generator [35] of the random process . Then, by some
algebraic manipulations for each , it can be veri-
fied that

where

Thus, if

(2)

By the Newton-Leibniz formula, we have

or equivalently,

The above equality and (2) hold together, by Finsler’s lemma,
if and only if

which follows from and

Now, we are in a position to deal with the stochastic stability
of . In view of , we conclude that there exists
a scalar such that

for all . Therefore, it is readily seen from Dynkin’s
formula that

which can be used to deduce that

Then, using a similar method given in [31], we have that there
exists a scalar such that, for any ,

Based on the stochastic Lyapunov-Krasovskii functional
, it can be verified that there exists a scalar

such that

Hence,
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Taking limit as , it is clear that

which shows that MJTDS is stochastically stable. This com-
pletes the proof.
For stability analysis, Theorem 1 provides a simple represen-

tation of stability analysis forMJLSs with a constant delay using
the Newton-Leibniz formula and the Finsler Lemma.

III. DELAY-DEPENDENT STABILITY ANALYSIS

Now, we are in a position to give the stability analysis in the
case of partly unknown transition rates by applying the approach
proposed in [36] for delay-free MJLSs.
Theorem 2: MJTDS with and partially unknown

transition rates is stochastically stable for any delay
if there exist matrices such that the
following LMIs hold for ,

where and are defined in in Theorem 1 and

with is a given lower bound of the unknown diagonal ele-
ments.

Proof: Two cases and will be separately
discussed for the stability analysis of system (II).
Case I: .
It is easy to get that for . We only

consider here since means that all the unknown
elements in the th row are zeros (for ).
For all , the element satisfies

and
(for ), then we get

and

Therefore, is equivalent to for all .
Case II: .
Since is unknown, we get the relationships that

and . Also, we only consider here
since if , then all the unknown elements in
the th row are zeros (for ).

Likewise, since and
, we know that

Denoting , then

which means that is equivalent to
for all and .

Since is unknown and is a lower bound of
, that is, . There exists a sufficiently small

scalar may take any value between ,
and then can be further written as a convex combination

where takes value arbitrarily in . Thus,
holds if and only if the following two

boundary conditions hold simultaneously,

(3)

(4)

where

Due to can be arbitrarily small, (4) holds if and only if

which indeed is a particular case of inequality (3) when
. Hence,

is equivalent to (3) holds, which is precisely .
Therefore, in the case of partially known transition rates, one

can readily conclude that system is stochastically stable if
and for and ,

respectively. This completes the proof.
Remark 1: Using the properties that the sum of each row is

zero in the transition rate matrix, together with convex combi-
nation technique, a sufficient condition for the stability analysis
for MJTDSs with incomplete transition rates is derived in The-
orem 2. The knowledge of the transition rate matrix has been
fully used. It should be noted that if there exists , all the
elements in the th row of are fully known, that is, ,
the corresponding inequalities for th row to checking the sta-
bility property go back to the form of .
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Remark 2: For the problem of stability analysis of MJTDSs
with partial information on transition rates, a free-connection
weighting matrix method has been proposed recently [37] to
compute an upper bound of the allowable time delay by intro-
ducing some equalities involving a lot of slack matrices, some
of which have been proved redundant in [38] on improving the
margin of the time delay. Specifically, the form of the stability
criterion given in [37] may not be amenable to designing a sta-
bilizing controller due to the presence of cross-product terms of
the slack matrices and the controller gains.

IV. DELAY-DEPENDENT STABILIZATION

Let us consider the stabilization problem for system in the
presence of partially unknown transition rates via a mode-de-
pendent static output feedback controller of the following form:

The closed-loop system is given by

where and .
If and are replaced with and , respectively,

in the inequalities in Theorem 2, the non-
linear coupling terms of the controller gains and the Lyapunov
matrices will appear due to the two orthogonal complements.
Hence, much difficulty exists to design a controller by some ex-
isting stabilizing approaches [14], [16], [26], [28], [30], [36].
The following theoremwill present a sufficient criterion to over-
come such difficulties by a new technique.
Theorem 3 (Output Feedback): Closed-loop system with

partially known transition rates is stochastically stable for any
delay , if there exist matrices

, nonsingular matrices
, and matrices such that

hold for , where

and are , respectively, defined in Theorems 1 and
2 with replaced with .

Proof: Closed-loop system is stochastically stable, by
Theorem 2, if there exist matrices and
such that, for ,

is full row rank and its right orthogonal complement satisfies
and . It follows that

which results that is the left orthogonal complement of
, that is, . The inequalities for the stability of

the closed-loop system , are
equivalent to

(5)

On the other hand, based on Lemma 2, set
with sufficiently large scalars , and

. We have that the inequalities in
(5) hold if there exist full row rank matrices

with such that

(6)

Hence, system is stochastically stable via an output feed-
back controller if (6) holds. Next, we will derive an equiv-
alent condition of (6).
Denote

where is any nonsingular matrices. By Schur
complement equivalence, (6) is equivalent to

Pre- and post multiplying the above inequality with
and , respectively, it turns to be

Since the matrix is full row rank, pre- and post multi-
plying the above inequality with and

, respectively, it is equivalent to

(7)

which, by Schur complement equivalence, is also equivalent to

(8)

Due to the particular structure of , it is easy to know that
is full row rank and has a similar form to ,
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which can be denoted by where is a nonsingular matrix.
Then,

Hence, (8) is equivalent to

By setting , the inequality
(7) holds if respectively for two cases. This
completes the proof.
Remark 3: One feature of the stability characterizations given

in Theorems 2 and 3 is that there is no product term involving
the Lyapunov matrices and the systemmatrices, which
is suitable for determining the robust stability of the system
with polytopic-type uncertainties satisfying the following real
convex polytopic constraint:

where and are constant
matrices with appropriate dimensions and are
time-invariant uncertainties. A similar treatment could be taken
as that in [39], [40].
In the special case where state-feedback is applicable (that is,

), we have a state feedback controller as follows:

The closed-loop system becomes

where .
Theorem 4 (State Feedback): Closed-loop system with

partially known transition rates is stochastically stable for any
delay , if there exist matrices

, nonsingular matrices
and matrices such that, for

,

hold where are defined in Theorem 3 in
which

When all the elements in the transition rate matrix are un-
known except for a lower bound of , the consid-
ered MJTDSs are subject to a special case of a switching model
under arbitrary switching (see [41] for the time-varying delay
case). Meanwhile, a natural conclusion can be directly drawn
from Theorems 4 and 3 to this case.
Corollary 1: For any delay , MJTDS with

fully unknown transition rates is stochastically stable via state
or output feedback control, if there exist matrices

, nonsingular matrices
and such that

hold for , where and are defined in
Theorem 3 and,

with in the state feedback case and
in the static output feedback case, respectively.

V. CONTROLLER COMPUTATION

Observing the stabilization conditions in Theorems 3 and 4
and Corollary 1, there are nonlinear terms . This gives
rise to the non-convexity of the synthesis problems. The con-
troller design problem amounts to searching feasible solutions
of the quadratic matrix inequalities, such that the stabilizability
of system (II) can be guaranteed via the state feedback con-
trollers or the static output feedback controllers. We now adopt
an effective algorithm proposed in [42], [43] to compute the
controller gains. The nonconvex problem in Theorem 3 for the
static output feedback control is chosen as an example to illus-
trate the details of the algorithm. A similar algorithm can be
constructed to deal with the nonconvex problems in other cases
in Theorem 4 and Corollary 1.
To accommodate the term , we introduce additional

design variables . Since

for any matrices and , it can be obtained that

(9)

with equalities hold when . By substituting the relation-
ship in (9) into , sufficient conditions for the
existence of the static output feedback controller gains are
given in the following theorem.
Theorem 5: The stabilizability conditions in Theorem 3
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hold if and only if there exist matrices
, nonsingular matrices

and matrices such that

hold for all , in which, ,
and are defined in Theorem 3.

Proof: The sufficiency is obvious, and only the necessity
proof needs to be carried out. Suppose that

hold, there must exist scalars such that
. Select a matrix and set
, then we have

Hence, hold.
The nonconvex problem in Theorem 5 points to an iterative

approach to solve and , namely, if are fixed
in advance, reduce to an LMI problem
with respect to matrix variables . The detailed
process is shown in the following algorithm.

Algorithm ILMI

Step 1) Set , and select initial matrices and
a delay upper bound .

Step 2) Solve the following convex optimization
problem with respect to

and ,

(10)

Denote as the minimized value of
satisfying (10). If , MJTDS is
stochastically stable via an output feedback
controller , STOP, else, go to Step 3.

Step 3) Solve the following convex optimization
problem with respect to

, and ,

(11)

Denote as the which minimizes
.

Step 4) If , a prescribed tolerance,
go to Step 5, else, update as

and set , then go to Step 2.
Step 5) MJTDS may not be stabilizable via output

feedback control. STOP.

Remark 4: For a given MJTDS , it is stabilizable via static
output feedback if inequalities have fea-
sible solutions. In order to search for these feasible solutions, in-
equality (9) provides a crucial rule to update in Algorithm
ILMI. The optimization in Step 3 guarantees that the sequence

is bounded and it is a monotonic decreasing se-
quence with for fixed when ,
where is a positive integer [44]. On the other hand, the se-
quence is guaranteed to be monotonically decreasing.
To make this fact clear, let us denote

. For a fixed , one has
from Step 3. With an updated in Step 4, we
get

which is derived from

based on the relationship shown in (9). Therefore, there exists
an such that is feasible
with the fixed . Meanwhile, in the optimization problem
(10) in Step 2,

then a solution can be obtained. As a result,
through Steps 2 and 3, one can conclude that Algorithm ILMI
is convergent although we may not achieve a feasible solution
for the stabilization problem.
Remark 5: Like other iterative approaches, Algorithm ILMI

involves local optimization due to the dependence of the choice
of the initial values. Therefore, if the algorithm fails to arrive at
a feasible solution, we may select other (randomly) and run
Algorithm ILMI again. In addition, the initial delay bound in
Step 1 of Algorithm ILMI can be chosen to be a sufficiently
small positive scalar. If a negative is found, increase
with a prescribed small increment as , then
run the algorithm again till the algorithm has no feasible result.
On the contrary, if no feasible is found, the system may not be
stabilizable via a static output feedback control.

VI. NUMERICAL EXAMPLES

This section presents several numerical examples to verify
the validity of the results obtained. In the sequel, the question
mark symbol ? denotes an unknown element in the transition
rate matrix .
Example 1 (Stability): Consider the underlying MJTDS

with two operation modes:
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TABLE I
DIFFERENT TRANSITION RATE MATRICES FOR EXAMPLE 1

TABLE II
COMPARISON ON IN EXAMPLE 1

We now apply the proposed approach to estimate the upper
bound such that MJTDS given in this example is stochas-
tically stable for any delay satisfying . Here, three
cases for the transition rate matrix shown in Table I will be
separately discussed. In Case I, all the elements in each row of
are unknown. For different diagonal element lower bounds
of the diagonal elements given in Table II, by

Theorem 2, the upper bounds are obtained. It can be seen from
the second row in Table II that the smaller the assigned value of
, the smaller the delay upper bound obtained, which tends to

a constant value.
If we select another as in Case II, where the elements in the

first row are completely unknown and those in the second row
are fully known, based on Theorems 1 and 2, the MJTDS is
stochastically stable if

To calculate usingMATLAB toolbox, the possible upper bounds
satisfy the above inequalities are listed in Table II for as-

signed as , and , respectively. If the tran-
sition rate matrix becomes

in Case III, the upper bounds on the delay are obtained in the last
row in Table II. There is an interesting phenomenon in such case
that becomes an effectively “infinite” value when
is assigned as . Within the numerical accuracy of compu-

tation, we may conclude that MJTDS is delay-independent if
the uncertainty bound of the unknown diagonal element is
not less than .
It is clearly observed from Table II that, when all or part

of the transition rates are unable to obtain, the maximum time
delay tolerated by MJTDS for maintaining stability becomes
smaller as the transition rates knowledge reduces and the uncer-
tainty of the unknown diagonal element increases.
For the last two cases, the computed values of obtained

in [37] are 0.7041 and 0.6962, respectively, and no allowable
delay upper bound can be found. Moreover, compared with the
stability conditions in Theorem 4 [37], Theorem 2 in our paper
not only gives larger upper bound on the time delay, but also
has significantly fewer variables.WhenMJTDSs have modes
and , the number of decision variables to be
determined in our approach is , while

that in [37] is . In other
words, the total computation variables involved in [37] are a
dozen times more than those in Theorem 2 for large or .
Example 2: Consider the following MJTDS with three op-

eration modes:

and

Suppose the transition rate matrix is given by

The purpose of this example is to verify the efficiency of the pro-
posed approach for stabilizability analysis. Note that the transi-
tion rate matrix involves both known and unknown diagonal
elements. We assign a priori a lower bound of the unknown di-
agonal elements as . Based on Theorem 4 and Al-
gorithm ILMI with , system is stabiliz-
able with (the largest value of the delay ensuring
stability based on the feasibility of inequalities derived in The-
orem 5) via the state feedback controllers whose gains given in
Table III, and the other corresponding matrix variables are as
follows:
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TABLE III
STATE FEEDBACK STABILIZING CONTROLLERS FOR EXAMPLE 2 WITH

and

Given the output measurements in each subsystem as

by Theorem 3 and Algorithm ILMI, with the same initial ma-
trices , MJTDS in this example is MSS
with (the largest value on the delay to guarantee
stability based on Algorithm ILMI) via static output feedback
with gains presented in Table IV.
The associated matrix variables are

and

TABLE IV
STATIC OUTPUT FEEDBACK STABILIZING CONTROLLERS FOR EXAMPLE 2

WITH

TABLE V
STATE FEEDBACK STABILIZING CONTROLLERS FOR EXAMPLE 3 WITH

It is worth mentioning that in this example to design the state
feedback and the static output feedback controllers, the max-
imum iteration number in Algorithm ILMI is assigned as 30.
According to the authors’ numerical experience, the feasible
delay upper bound will often increase to a limiting value as
the maximum number of iterations increases when the same de-
cision variables are used. In other words, the feasible solution
obtained by Algorithm ILMI not only depends on the choice of
initial matrices but also depends on the maximal number of
iterations fixed in advance.
Example 3: Consider deterministic switched MJTDS

under arbitrary switching which has two subsystems as fol-
lows:

Based on Corollary 1, a feasible upper bound on delay
can be reached. With such a delay value, the system

is stochastically stable via state feedback with gains given in
Table V.
Other matrix variables are

and
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In this example, the initial matrices in Algorithm
ILMI are chosen to be a random matrix

In addition, it is interesting to see that is approximately equal
to in the result with

When all the transition rates are unknown, for the th row of ,
the stabilizability criteria in Corollary 1 are

equivalently, that is,

(12)

(13)

Intuitively, the more negative the assigned value of , the closer
and get. For instance, assigning and ,

we obtain, respectively,

Therefore, the two inequalities in (12) and (13) naturally lead to
a sufficient condition by having the first inequality holds with

.
VII. CONCLUSION

This paper has investigated the analysis and synthesis prob-
lems of MJTDSs with incomplete knowledge of the transition
rate matrix. In the analysis aspect, an LMI approach has been
developed to test the stability property. The information of the
transition rates has been fully used in the criteria. The decou-
pling of the Lyapunov matrices and the systemmatrices can also
allow robust stability result for polytopic-type uncertainties to
be developed. In the synthesis aspect, both the state feedback
and the static output feedback controllers have been designed
in a similar framework which guarantee the stochastic stability
of the closed-loop systems. The desired controllers can be con-
structed through a convex optimization problem.
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