17 research outputs found

    Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest

    Get PDF
    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (Amass), nitrogen concentration (Nmass), and ÎŽ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (Aarea), phosphorus concentration per unit mass (Pmass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree Aarea decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana ÎŽ13C increased four times more than tree ÎŽ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher Amass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at root s=13 TeV

    Get PDF

    Spatial distribution by Canistropsis microps (E. Morren ex Mez) Leme (Bromeliaceae: Bromelioideae) in the Atlantic rain forest in Ilha Grande, Southeastern Brazil

    No full text
    Canistropsis microps (Bromeliaceae: Bromelioideae) is an endemic species of Atlantic rain forest areas in Rio de Janeiro State, which are very abundant in not very disturbed forests in Ilha Grande, on the southern coast of the State. In this study, we analyzed the vertical and horizontal distribution patterns of the species in an area of rain forest with little evidence of disturbance at Vila Dois Rios, Ilha Grande, relating the patterns to sunlight in the microhabitat. We also identified the types of substrate used by the species and the rate of asexual reproduction. Canistropsis microps had high densities (estimated at 84,425 rosettes/ha), and has an aggregated distribution (Id = 2.86). About 80% of the rosettes were generated by clonal growth, whereas less than 20% were produced from seedlings. Most of the rosettes were found on straight tree trunks (DBH > 50 cm). There was a significant inverse correlation between the incidence of sunlight in the habitat and the abundance of individuals. Rosettes were found up to a maximum height of 9.5 m, but most occured between 1.5 and 5.5 m, where light varied from 25 to 50 ”mol.s-1.m-2. We conclude that vertical and horizontal distribution patterns in C. microps may be partially explained by the occurrence of appropriate substrate, an intensity of sunlight favorable to the development of the species and to a high rate of vegetative reproduction

    Lichens and Bryophytes: Habitats and Species

    No full text
    corecore