2,394 research outputs found

    The large scale clustering of radio sources

    Full text link
    The observed two-point angular correlation function, w(theta), of mJy radio sources exhibits the puzzling feature of a power-law behaviour up to very large (almost 10 degrees) angular scales which cannot be accounted for in the standard hierarchical clustering scenario for any realistic redshift distribution of such sources. After having discarded the possibility that the signal can be explained by a high density local source population, we find no alternatives to assuming that - at variance with all the other extragalactic populations studied so far, and in particular with optically selected quasars - radio sources responsible for the large-scale clustering signal were increasingly less clustered with increasing look-back time, up to at least z=1. The data are accurately accounted for in terms of a bias function which decreases with increasing redshift, mirroring the evolution with cosmic time of the characteristic halo mass, M_{star}, entering the non linear regime. In the framework of the `concordance cosmology', the effective halo mass controlling the bias parameter is found to decrease from about 10^{15} M_{sun}/h at z=0 to the value appropriate for optically selected quasars, 10^{13} M_{sun}/h, at z=1.5. This suggests that, in the redshift range probed by the data, the clustering evolution of radio sources is ruled by the growth of large-scale structure, and that they are associated with the densest environments virializing at any cosmic epoch. The data provide only loose constraints on radio source clustering at z>1 so we cannot rule out the possibility that at these redshifts the clustering evolution of radio sources enters a different regime, perhaps similar to that found for optically selected quasars. The dependence of w(theta) on cosmological parameters is also discussed.Comment: 9 pages, 8 figures. Accepted for publication on MNRA

    A dark matter interpretation for the ARCADE excess?

    Full text link
    The ARCADE 2 Collaboration has recently measured an isotropic radio emission which is significantly brighter than the expected contributions from known extra-galactic sources. The simplest explanation of such excess involves a "new" population of unresolved sources which become the most numerous at very low (observationally unreached) brightness. We investigate this scenario in terms of synchrotron radiation induced by WIMP annihilations or decays in extragalactic halos. Intriguingly, for light-mass WIMPs with thermal annihilation cross-section, and fairly conservative clustering assumptions, the level of expected radio emission matches the ARCADE observations.Comment: 5 pages, 3 figures. v2: one benchmark model added, comments and references expanded, to appear in PR

    Average fractional polarization of extragalactic sources at Planck frequencies

    Full text link
    Recent detailed simulations have shown that an insufficiently accurate characterization of the contamination of unresolved polarized extragalactic sources can seriously bias measurements of the primordial cosmic microwave background (CMB) power spectrum if the tensor-to-scalar ratio r∌0.001,r\sim 0.001, as predicted by models currently of special interest (e.g., Starobinsky's R2R^2 and Higgs inflation). This has motivated a reanalysis of the median polarization fraction of extragalactic sources (radio-loud AGNs and dusty galaxies) using data from the \textit{Planck} polarization maps. Our approach, exploiting the intensity distribution analysis, mitigates or overcomes the most delicate aspects of earlier analyses based on stacking techniques. By means of simulations, we have shown that the residual noise bias on the median polarization fraction, Πmedian\Pi_{\rm median}, of extragalactic sources is generally \simlt 0.1\%. For radio sources, we have found Πmedian≃2.83%\Pi_{\rm median} \simeq 2.83\%, with no significant dependence on either frequency or flux density, in good agreement with the earlier estimate and with high-sensitivity measurements in the frequency range 5--40\,GHz. No polarization signal is detected in the case of dusty galaxies, implying 90\% confidence upper limits of \Pi_{\rm dusty}\simlt 2.2\% at 353\,GHz and of \simlt 3.9\% at 217\,GHz. The contamination of CMB polarization maps by unresolved point sources is discussed.Comment: 10 pages, 3 figures, 7 tables; revised version. In press on Astronomy and Astrophysic

    A reassessment of the evidence of the Integrated Sachs-Wolfe effect through the WMAP-NVSS correlation

    Full text link
    We reassess the estimate of the cross-correlation of the spatial distribution of the NRAO VLA Sky Survey (NVSS) radio sources with that of Cosmic Microwave Background (CMB) anisotropies from the Wilkinson Microwave Anisotropy Probe (WMAP). This re-analysis is motivated by the fact that most previous studies adopted a redshift distribution of NVSS sources inconsistent with recent data. We find that the constraints on the bias-weighted redshift distribution, b(z)xN(z), of NVSS sources, set by the observed angular correlation function, w(theta), strongly mitigate the effect of the choice of N(z). If such constraints are met, even highly discrepant redshift distributions yield NVSS-WMAP cross-correlation functions consistent with each other within statistical errors. The models favoured by recent data imply a bias factor, b(z), decreasing with increasing z, rather than constant, as assumed by most previous analyses. As a consequence, the function b(z)xN(z) has more weight at z<1, i.e. in the redshift range yielding the maximum contribution to the ISW in a standard LambdaCDM cosmology. On the whole, the NVSS turns out to be better suited for ISW studies than generally believed, even in the absence of an observational determination of the redshift distribution. The NVSS-WMAP cross-correlation function is found to be fully consistent with the prediction of the standard LambdaCDM cosmology.Comment: 6 pages, 2 figures, submitted to MNRA

    Angular Correlations of the X-Ray Background and Clustering of Extragalactic X-Ray Sources

    Get PDF
    The information content of the autocorrelation function (ACF) of intensity fluctuations of the X-ray background (XRB) is analyzed. The tight upper limits set by ROSAT deep survey data on the ACF at arcmin scales imply strong constraints on clustering properties of X-ray sources at cosmological distances and on their contribution to the soft XRB. If quasars have a clustering radius r_0=12-20 Mpc (H_0=50), and their two point correlation function, is constant in comoving coordinates as indicated by optical data, they cannot make up more 40-50% of the soft XRB (the maximum contribution may reach 80% in the case of stable clustering, epsilon=0). Active Star-forming (ASF) galaxies clustered like normal galaxies, with r_0=10-12 Mpc can yield up to 20% or up to 40% of the soft XRB for epsilon=-1.2 or epsilon=0, respectively. The ACF on degree scales essentially reflects the clustering properties of local sources and is proportional to their volume emissivity. The upper limits on scales of a few degrees imply that hard X-ray selected AGNs have r_0<25 Mpc if epsilon=0 or r_0<20 Mpc if epsilon=-1.2. No significant constraints are set on clustering of ASF galaxies, due to their low local volume emissivity. The possible signal on scales >6 deg, if real, may be due to AGNs with r_0=20 Mpc; the contribution from clusters of galaxies with r_0~50 Mpc is a factor 2 lower.Comment: ApJ, in press (20 July 1993); 28 pages, TeX, ASTRPD-93-2-0

    Polarization Properties of Extragalactic Radio Sources and Their Contribution to Microwave Polarization Fluctuations

    Get PDF
    We investigate the statistical properties of the polarized emission of extragalactic radio sources and estimate their contribution to the power spectrum of polarization fluctuations in the microwave region. The basic ingredients of our analysis are the NVSS polarization data, the multifrequency study of polarization properties of the B3-VLA sample (Mack et al. 2002) which has allowed us to quantify Faraday depolarization effects, and the 15 GHz survey by Taylor et al. (2001), which has provided strong constraints on the high-frequency spectral indices of sources. The polarization degree of both steep- and flat-spectrum at 1.4 GHz is found to be anti-correlated with the flux density. The median polarization degree at 1.4 GHz of both steep- and flat-spectrum sources brighter than S(1.4GHz)=80S(1.4 \hbox{GHz})=80 mJy is ≃2.2\simeq 2.2%. The data by Mack et al. (2002) indicate a substantial mean Faraday depolarization at 1.4 GHz for steep spectrum sources, while the depolarization is undetermined for most flat/inverted-spectrum sources. Exploiting this complex of information we have estimated the power spectrum of polarization fluctuations due to extragalactic radio sources at microwave frequencies. We confirm that extragalactic sources are expected to be the main contaminant of Cosmic Microwave Background (CMB) polarization maps on small angular scales. At frequencies <30< 30 GHz the amplitude of their power spectrum is expected to be comparable to that of the EE-mode of the CMB. At higher frequencies, however, the CMB dominates.Comment: 10 pages, A&A in pres

    A Physical Model for Co-evolution of QSOs and of their Spheroidal Hosts

    Full text link
    At variance with most semi-analytic models, in the Anti-hierarchical Baryon Collapse scenario (Granato et al. 2001, 2004) the main driver of the galaxy formation and evolution is not the merging sequence but are baryon processes. This approach emphasizes, still in the framework of the hierarchical clustering paradigm for dark matter halos, feedback processes from supernova explosions and from active nuclei, that tie together star formation in spheroidal galaxies and the growth of black holes at their centers. We review some recent results showing the remarkably successful predictive power of this scenario, which allows us to account for the evolution with cosmic time of a broad variety of properties of galaxies and active nuclei, which proved to be very challenging for competing models.Comment: Invited talk at the Specola Vaticana Workshop on "AGN and Galaxy Evolution", Castel Gandolfo, 3-6 October 2005, 10 pages, 2 figure

    From First Galaxies to QSOs: feeding the baby monsters

    Full text link
    We present a physical model for the coevolution of massive spheroidal galaxies and active nuclei at their centers. Supernova heating is increasingly effective in slowing down the star formation and in driving gas outflows in smaller and smaller dark matter halos. Thus the more massive protogalaxies virializing at early times are the sites of faster star formation. The correspondingly higher radiation drag causes a faster angular momentum loss by the gas and induces a larger accretion rate onto the central black hole. In turn, the kinetic energy of the outflows powered by the active nuclei can unbind the residual gas in a time shorter for larger halos. The model accounts for a broad variety of dynamical, photometric and metallicity properties of early-type galaxies, for the M_BH -- \sigma relation and for the local supermassive black-hole mass function.Comment: 6 pages, contributed paper to Proceedings of the Conference on "Growing Black Holes" held in Garching, Germany, on June 21-25, 2004, edited by A. Merloni, S. Nayakshin and R. Sunyaev, Springer-Verlag series of "ESO Astrophysics Symposia

    Astrophysical and Cosmological Information from Large-scale sub-mm Surveys of Extragalactic Sources

    Get PDF
    We present a quantitative analysis of the astrophysical and cosmological information that can be extracted from the many important wide-area, shallow surveys that will be carried out in the next few years. Our calculations combine the predictions of the physical model by Granato et al. (2004) for the formation and evolution of spheroidal galaxies with up-to-date phenomenological models for the evolution of starburst and normal late-type galaxies and of radio sources. We compute the expected number counts and the redshift distributions of these source populations separately and then focus on proto-spheroidal galaxies. For the latter objects we predict the counts and redshift distributions of strongly lensed sources at 250, 350, 500, and 850 micron, the angular correlation function of sources detected in the surveys considered, the angular power spectra due to clustering of sources below the detection limit in Herschel and Planck surveys. An optimal survey for selecting strongly lensed proto-spheroidal galaxies is described, and it is shown how they can be easily distinguished from the other source populations. We also discuss the detectability of the imprints of the 1-halo and 2-halo regimes on angular correlation functions and clustering power spectra, as well as the constraints on cosmological parameters that can be obtained from the determinations of these quantities. The novel data relevant to derive the first sub-millimeter estimates of the local luminosity functions of starburst and late-type galaxies, and the constraints on the properties of rare source populations, such as blazars, are also briefly described.Comment: 16 pages, 10 figures. Accepted for publication on MNRA
    • 

    corecore