56 research outputs found

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come

    Managing complexity in high-concentration flow modelling aimed at hazard assessment: numerical and practical aspects

    Get PDF
    High-concentration flows are complex phenomena typical of Alpine mountain areas. Essentially, they are free-surface flows with intense sediment transport, often caused by intense rainfall events and involving large volumes of solid material. Because of the amount of sediments moved, the intense erosion and deposition processes typically observed and the quite unexpected character, these phenomena represent a serious hazard in populated mountain areas, where reliable and effective hazard-management and -protection strategies are required. In mountain-hazard management, high-concentration flows modelling represents a key factor, since it allows to evaluate impacts of possible hazard scenarios and the effectiveness of possible protection and mitigation measures. However, the intrinsic phenomenon complexity makes high-concentration flow modelling and hazard assessment quite challenging. In this thesis, some of the effects of high-concentration flow complexity on modelling are experienced directly and suitable solutions are proposed, to make the phenomenon description more reliable and straightforward. Among very different modelling approaches present in the literature, this work embraced the quasi-two phase, mobile-bed approach proposed in Armanini et al. (2009b) and in Rosatti and Begnudelli (2013a), which is implemented in the TRENT2D model. TRENT2D is a quite sophisticated model that solves a system of Partial Differential Equations over a Cartesian mesh by means of a finite-volume method with Godunov-type fluxes. By means of TRENT2D, the back-analysis of a couple of real debris-flow events occurred in Italy was first performed. These applications revealed clearly some troublesome "complexity issues", i.e. modelling issues generated by phenomenon complexity that may affect hazard assessment. Because of the public importance of the subject, four of the "complexity issues" identified were then faced directly. According to the purpose of this thesis, possible solutions to the issues were proposed, to ensure a proper description of the flow behaviour and possibly limit intricacy in the model use. The first complexity issue is "operational" and regards the use of the TRENT2D model and, more in general, the amount of work necessary to perform a complete hazard-assessment job about high-concentration flows. Because of the phenomenon complexity and the sophisticated character of the model, the operational chain necessary to assess hazard by means of TRENT2D appears quite demanding. The large efforts required in terms of handwork, computational charge and resources may divert the user attention from the physical meaning of the hazard-assessment process, possibly leading to inaccurate results. To overcome this issue, a possible solution is proposed, based on the use of a loosely-coupled Service Oriented Architecture approach. The aim is to develop a unique, user-friendly working environment able to support high-quality, cost-effective hazard assessment and, in perspective, the possible development of a Decision Support System for mountain hazard. The second complexity issue is "geometrical" and "numerical" and concerns morphology representation. Because of the strong interaction between high-concentration flows and bed morphology, these phenomena require bed morphology to be described with the right level of detail, especially where heterogeneity is outstanding. This is typically the case of urbanised mountain areas, with their characteristic terrain shapes, buildings, infrastructures, embankments and mitigation structures. A believable representation of these geometrical constraints may be fulfilled acting on the computational mesh used to solve model equations, preferably avoiding regular Cartesian meshes. In this work, a new version of the TRENT2D model is developed, based on the use of Delaunay, triangular unstructured meshes. To reach second order accuracy, a MUSCL-Hancock approach is considered, with gradient computation performed by means of the multidimensional method proposed in Barth and Jespersen (1989) for Euler equations. The effects of different gradient limiters are also evaluated, aiming at a proper description of the flow dynamics in heterogeneous morphology contexts. The third complexity issue is both "geometrical" and "mathematical". It concerns the effects of artificial structures, i.e. artificial geometrical constraints, on the flow dynamics. Among different structures aimed expressly at controlling the high-concentration flow behaviour, attention was paid to sluice gates, which can be used in channels and hydropower reservoirs to control sediment routing. In the literature, the effects of sluice gates have been studied especially with reference to clear water flows over fixed beds, while knowledge about the influence on high-concentration flows over mobile beds is still limited. Here, a rough, bread new mathematical description is proposed, in order to take into account the 3D morphodynamics effects caused by sluice gates in high-concentration flow modelling. The last complexity issue is pretty "numerical" and arises from the challenge of numerical models to comply with the phenomenon complexity. Generally speaking, reliable numerical models are expected to catch the main characteristics of the physical processes at both a general and a local spatial scale, although with a certain level of approximation, depending on the numerical scheme. Sometimes it may be hard to close the gap between the local phenomenon complexity and its numerical representation, leading to non-physical numerical results that could affect hazard assessment. In this work, a particular numerical issue is investigated, which was identified through a thorough analysis of TRENT2D model results. In particular, it was observed that the direction of the numerical mixture-mass flux is occasionally opposite to the direction of numerical solid-mass flux, despite the isokinetic approach which the model is based on. This incoherence was studied with a rigorous method, trying to fix the source of the problem. However, the question turned out to be quite tricky, due to the sophisticated character of the model. These four, deliberately heterogeneous, "complexity issues" allow to perceive clearly the size of complexity effects on high-concentration modelling. Furthermore, they give the measure of how much diffcult is reaching the right level of detail in describing and modelling high-concentration flows. The research of solutions that are accurate and as much simple as possible was not straightforward and required a quite large effort. Nonetheless, possible solutions were found in the end for three of the four "complexity issues", therefore the goal of the thesis can be considered as achieved

    I rapporti patrimoniali nella famiglia

    No full text
    L'impresa famigliare e le convenzioni matrimoniali nell'ambito dei rapporti patrimoniali tra i coniug

    Capitolo secondo- IL CONTRATTO E L’AUTONOMIA CONTRATTUALE

    No full text
    Aggiornamento del Trattato di diritto civile di Francesco Galgano alla luce dell'evoluzione normativa e giurisprudenziale

    Premessa

    No full text
    Nella premessa vengono introdotte le questioni che con l'avvento della robotica e dell'intelligenza artificiale pongono oggi all'attenzione del dibattito

    La societ\ue0 apparente

    No full text
    Aggiornamento alla luce dell'evoluzione giurisprudenziale e normativa(III edizione

    Lo stato di figlio

    No full text
    Parte aggiornata e accresciuta del manuale

    Capitolo quarantasettesimo - Lo stato di figlio

    No full text
    aggiornamento del manuale alla luce delle novitĂ  normative e giurisprudenzial

    L'impresa

    No full text
    aggiornamento del manuale (qui nello specifico, parte relativa all'impresa) alla luce delle novitĂ  normative e giurisprudenzial
    • …
    corecore