16 research outputs found

    Roadmap for a sustainable circular economy in lithium-ion and future battery technologies

    Get PDF
    The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (EOL), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates EOL disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of EOL battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future

    Синтез толщины профиля тонкоплёночной волноводной линзы Люнеберга

    No full text
    In the work the link between the focusing inhomogeneity of the effective refractive index of waveguide Luneburg lens and the irregularity of the waveguide layer thickness generating this inhomogeneity is demonstrated. For the dispersion relation of irregular thin-film waveguide in the model of adiabatic waveguide modes the problem of mathematical synthesis and computer-aided design of the waveguide layer thickness profile for the Luneburg thin-film generalized waveguide lens with a given focal length is being solved. The calculations are carried out in normalized (in a special way) coordinates to adapt the used relations to computer calculations. The obtained solution is compared with the same solution within the cross-section’s method. The performance of the algorithm implemented in Delphi, was demonstrated by plotting the dispersion curves and plotting a family of dispersion curves, demonstrating a critical convergence. As an additional result, the thickness profiles of additional (irregular in thickness) waveguide layer, forming a thin film generalized waveguide Luneburg lens were synthesized. This result generalizes Southwell’s results.В работе показана связь между фокусирующей неоднородностью эффективного показателя преломления волноводной линзы Люнеберга и неравномерностью толщины волноводного слоя, порождающей эту неоднородность. Для закона дисперсии нерегулярного тонкоплёночного волновода в модели адиабатических мод волновода решается задача математического синтеза и компьютерного проектирования профиля толщины волноводного слоя для тонкоплёночной обобщённой волноводной линзы Люнеберга с заданным фокусным расстоянием. Расчёты ведутся в нормированных специальным образом координатах для адаптации используемых соотношений к компьютерным расчётам. Полученное решение сравнивается с таким же решением в рамках метода сечений. Работоспособность алгоритма, реализованного в Delphi, была продемонстрирована путём построения дисперсионных кривых и семейства дисперсионных кривых, показывающих критическую сходимость. В качестве дополнительного результата были синтезированы профили толщины дополнительного нерегулярного по толщине волноводного слоя, образующего тонкоплёночную обобщённую волноводную линзу Люнеберга. Этот результат обобщает результаты Саутвелла

    Research data supporting the publication "Direct Reuse of Aluminium and Copper Current Collectors from Spent Lithium-ion Batteries"

    No full text
    Excell spreadsheets that showing various properties and electrochemical performance of reclaimed and pristine current collectors

    DNA Methylation Patterns Differ between Free-Living Rhizobium leguminosarum RCAM1026 and Bacteroids Formed in Symbiosis with Pea (Pisum sativum L.)

    No full text
    Rhizobium leguminosarum (Rl) is a common name for several genospecies of rhizobia able to form nitrogen-fixing nodules on the roots of pea (Pisum sativum L.) while undergoing terminal differentiation into a symbiotic form called bacteroids. In this work, we used Oxford Nanopore sequencing to analyze the genome methylation states of the free-living and differentiated forms of the Rl strain RCAM1026. The complete genome was assembled; no significant genome rearrangements between the cell forms were observed, but the relative abundances of replicons were different. GANTC, GGCGCC, and GATC methylated motifs were found in the genome, along with genes encoding methyltransferases with matching predicted target motifs. The GGCGCC motif was completely methylated in both states, with two restriction–modification clusters on different replicons enforcing this specific pattern of methylation. Methylation patterns for the GANTC and GATC motifs differed significantly depending on the cell state, which indicates their possible connection to the regulation of symbiotic differentiation. Further investigation into the differences of methylation patterns in the bacterial genomes coupled with gene expression analysis is needed to elucidate the function of bacterial epigenetic regulation in nitrogen-fixing symbiosis

    Draft Genome Sequence of the Commercial Strain <i>Rhizobium ruizarguesonis</i> bv. <i>viciae</i> RCAM1022

    No full text
    Legume plants enter a symbiosis with soil nitrogen-fixing bacteria (rhizobia), thereby gaining access to assimilable atmospheric nitrogen. Since this symbiosis is important for agriculture, biofertilizers with effective strains of rhizobia are created for crop legumes to increase their yield and minimize the amounts of mineral fertilizers required. In this work, we sequenced and characterized the genome of Rhizobium ruizarguesonis bv. viciae strain RCAM1022, a component of the ‘Rhizotorfin’ biofertilizer produced in Russia and used for pea (Pisum sativum L.)
    corecore