21 research outputs found

    Economic analysis of energy savings & cost effectiveness of deep energy retrofits of residential buildings in England

    Get PDF
    Buildings are known to consume a large proportion of the final energy demand (approximately 37%) in the United Kingdom. Fragmenting this further, about 60% of the supply of a building is expended in space and water heating. Modern building stock are constructed with thermal insulation and are fitted with energy efficient appliances and fixtures. For this reason, focus has to switch to the older building stock in England in order to identify more techniques to reduce energy consumption therefore reducing the carbon footprint of these buildings, to this end, several building energy upgrade methods such as double-glazed windows, attic insulation, green spaces etc. have been proposed and are commercially available; However, house owners and building stakeholders are often misinformed in making retrofit decisions, and often do so based on the strong marketing techniques of manufacturers. This paper generates a smart decision making matrix for stakeholders to select and invest in the optimal energy saving measures which would suit their building type

    The influence of bioclimatic urban redevelopment on outdoor thermal comfort.

    Get PDF
    One of the greatest environmental challenges for the sustainability of future cities is the mitigation of the urban heat island phenomenon and thus, improvement of outdoor comfort conditions for people. The emphasis of this work is to analyze how mitigation techniques in a dense urban environment affect microclimate parameters and outdoor thermal comfort. The quantitative differentiation of outdoor thermal comfort conditions through bioclimatic urban redevelopment for an area in the city of Serres, Greece is investigated. The main bioclimatic interventions concern the application of cool paving materials, the increase of vegetated areas and the creation of water surfaces. The analysis and comparison are performed for a hot summer day with the ENVI-met model. Software simulations regarding microclimatic and outdoor thermal comfort conditions are performed for the daytime period 06.00–20.00 (14 h) at the height of 1.8 m from the ground. The examined parameters are air temperature, surface temperature and mean radiant temperature (Tmrt). The evaluation of outdoor thermal comfort conditions is conducted using the index PMV (Predicted Mean Vote), adapted for outdoor conditions. The results of simulations are discussed regarding the assessment of bioclimatic interventions.N/

    Micro- climate adaptation of whole building energy simulation in large complexes.

    Get PDF
    The purpose of this study was to evaluate the cooling demand during a summer day over a large city area before and after bioclimatic interventions in outdoor spaces by using whole building thermal simulation. This kind of interventions ultimately leads to a microclimatic change in a city. Prediction of microclimate data for a whole day in a large area due to changes in outdoor spaces is time and cost demanding. A model for prediction of hourly microclimatic data in a region for a whole day by employing Fourier analysis of past (measured) and future (simulated from a CFD analysis) microclimate data of a limited period (sunlight hours) was also developed. The whole building energy simulation software TAS-EDSL was applied for a quite large built space (∼500 m × 500 m), for simultaneous simulations in all buildings in the area, and took into account detailed building construction data, mutual shading between buildings and local climatic conditions. In this context, strategies and practices that a building complex should follow in the future in relation to climate change could be investigated. Simulation estimations of cooling loads of building spaces were related to buildings’ age, orientation and height. Main outcome of the study was the ability to assess building energy performance due to exterior micro- climate improvement, simultaneously, for about 200 buildings.N/

    Transformation of a university building into a zero energy building in Mediterranean climate.

    Get PDF
    In the context of environmental policy, the EU has launched a series of initiatives aimed at increasing the use of energy efficiency, as it has pledged to reduce energy consumption by 20%, compared with projected levels of growth of CO2 emissions into the atmosphere by 2020. In Greece CO2 emission levels in the atmosphere have risen significantly over the past two decades [1]. For the year 2011, CO2 emissions per person in Greece correspond to 7.56 t. According to the data, this increase in emissions is reflected to a 151.2% above from the levels of 1980 and a 756% increase from 1960 levels. The building sector consumes the largest amount of energy in Greece, therefore constitutes the most important source of CO2 emissions. The energy upgrade of the building sector produces multiple benefits such as reduced energy consumption, which is consistent with the reduction of air pollution. Additionally, there is a significant improvement at the interior comfort conditions of the building, which promotes productivity and occupant health. Moreover, because of the large number of educational buildings in the country, the energy consumption of them present a significant amount of the country's total energy consumption and simultaneously has the effect of increasing the costs paid by the state budget for the operation and maintenance of public buildings. The investigation of alternative methods to reduce energy consumption in educational buildings is an important approach for sustainability and economic development of the country over time. The purpose of this paper is to study and evaluate the energy saving methods of a university building in Mediterranean climate with significant energy consumption. Additionally, through Building Information Modeling (BIM) and Computational Fluid Dynamics (CFD) software, studies considering the contribution of passive heating and cooling techniques were conducted, in order to minimize energy consumption in pursuit of desirable interior thermal comfort conditions.N/

    Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis

    Get PDF
    Solar photovoltaic-thermal (PV/T) technology is the main strategy for harvesting solar energy due to its non-polluting, stability, good visibility and security features. The aim of the project is to develop a mathematical model of a PV/T module integrated with optical filtration and MXene-enhanced PCM. In this system, a single MXene-enhanced PCM layer is attached between the PV panel and absorber pipe with solid MXene-PCM for storage and cooling purposes. Additionally, the thermal fluid is utilized in the copper absorber pipe and connected to the heat pump system for enhancing system thermal and electrical efficiency. Furthermore, the influences of the optical filtration channel height, concentration of the nanoparticles on PV surface temperature and overall system efficiency are also discussed. This study demonstrates that the annual thermal and electrical energy output can reach 5370 kWh per annum with 74.92% of thermal efficiency and 5620 kWh with 14.65% of electrical efficiency, respectively, compared to the traditional PV/T module. Meanwhile, when the optical filtration channel height and volume concentration are enhanced, they exert a negative influence on the PV surface temperature, but the overall thermal efficiency is enhanced due to low thermal resistance to heat losses and low radiation-shielding layers

    State-of-the-art review of 3DPV technology: structures and models

    Get PDF
    © 2019 Elsevier Ltd Increasing energy conversion efficiency from sunlight to power is one of the key solutions for the world's energy shortage and greenhouse gas reduction, but the conventional flat photovoltaic module without sun tracking mechanism has the low sunlight energy collection ability. This paper presents the state-of-the-art three-dimensional photovoltaic (3DPV) technology with high photovoltaic energy conversion efficiency, which is able to absorb off-peak sunlight and reflected light more effectively, thereby it can generate more power. At first, this paper is to catalogue and critique different 3DPV structures and models, as well as assess their characteristics. Afterwards, the main influence factors on the 3DPV structures and models including shape, height and spacing of the solar cells, latitude of the installation, optimal device design and shadow cast, are reviewed. Finally, the challenges and future technological developments of 3DPV structures and models are highlighted. This study demonstrated that the 3DPV technology can increase the captured sunlight approximately 15–30% in comparison with the conventional flat PV technology

    Energy performance and life cycle cost assessments of a photovoltaic/thermal assisted heat pump system

    Get PDF
    A photovoltaic/thermal module assisted heat pump system is investigated in this paper, which provides electrical and thermal energy for a domestic building. In-depth evaluation on the system energy production is conducted based on the finite difference method for a long-term operating period. The 25 years’ system life cycle cost is assessed via the Monte Carlo simulation under the Feed-in Tariff (FiT) and Renewable Heat Incentive schemes, the annual energy savings, income and payback period (PBP) are compared for the FiT and Smart Export Guarantee (SEG) schemes. The technical analysis results illustrate that the system is able to fulfil the building thermal and electrical energy demands from April to October and from May to August, respectively, and the extra electricity of 229.47 kWh is fed into the grid. The economic assessment results clarify that the system achieves a net present value (NPV) of £38,990 and has a PBP of 4.15 years. Meanwhile, the economic sensitive analyses reveal that the high discount rate reduces the system NPV whereas the high investment cost causes a long PBP to realize the positive NPV. Compared with the SEG scheme, the FiT is the most cost-effective method for renewable electricity generation and has the shortest PBP.N/

    Techno-economic assessment of the horizontal geothermal heat pump systems: a comprehensive review

    Get PDF
    Geothermal heat pump has been widely recognized as one of the promising technologies for building applications because of its high energy efficiency and low operating expense, however the high capital investment and installation costs discourage building owners to choose such a system. The horizontal geothermal heat pump system with reduced cost is a viable option that would be utilized widely, the aim of this paper is to catalogue and critique a range of effective approaches for the horizontal geothermal heat pump systems in different regions based on techno-economic assessment data. A ground heat exchanger is a vital component of the horizontal geothermal heat pump. The state-of-the-art analytical and numerical models of the linear-loop, slinky-coil and spiral-coil ground heat exchangers are generalized, in addition to their advantages and disadvantages. A large number of economic evaluation methods for analysing the financial performance of the horizontal geothermal heat pump system are presented. At the end, the standpoints, recommendations and potential future study on the horizontal geothermal heat pump system are deliberated

    Techno-economic assessment of the horizontal geothermal heat pump systems: A comprehensive review

    Get PDF
    Geothermal heat pump has been widely recognized as one of the promising technologies for building applications because of its high energy efficiency and low operating expense, however the high capital investment and installation costs discourage building owners to choose such a system. The horizontal geothermal heat pump system with reduced cost is a viable option that would be utilized widely, the aim of this paper is to catalogue and critique a range of effective approaches for the horizontal geothermal heat pump systems in different regions based on techno-economic assessment data. A ground heat exchanger is a vital component of the horizontal geothermal heat pump. The state-of-the-art analytical and numerical models of the linear-loop, slinky-coil and spiral-coil ground heat exchangers are generalized, in addition to their advantages and disadvantages. A large number of economic evaluation methods for analysing the financial performance of the horizontal geothermal heat pump system are presented. At the end, the standpoints, recommendations and potential future study on the horizontal geothermal heat pump system are deliberated.N/
    corecore