311 research outputs found
Mental state estimation for brain-computer interfaces
Mental state estimation is potentially useful for the development of asynchronous brain-computer interfaces. In this study, four mental states have been identified and decoded from the electrocorticograms (ECoGs) of six epileptic patients, engaged in a memory reach task. A novel signal analysis technique has been applied to high-dimensional, statistically sparse ECoGs recorded by a large number of electrodes. The strength of the proposed technique lies in its ability to jointly extract spatial and temporal patterns, responsible for encoding mental state differences. As such, the technique offers a systematic way of analyzing the spatiotemporal aspects of brain information processing and may be applicable to a wide range of spatiotemporal neurophysiological signals
Optimal time sharing in underlay cognitive radio systems with RF energy harvesting
Due to the fundamental tradeoffs, achieving spectrum efficiency and energy
efficiency are two contending design challenges for the future wireless
networks. However, applying radio-frequency (RF) energy harvesting (EH) in a
cognitive radio system could potentially circumvent this tradeoff, resulting in
a secondary system with limitless power supply and meaningful achievable
information rates. This paper proposes an online solution for the optimal time
allocation (time sharing) between the EH phase and the information transmission
(IT) phase in an underlay cognitive radio system, which harvests the RF energy
originating from the primary system. The proposed online solution maximizes the
average achievable rate of the cognitive radio system, subject to the
-percentile protection criteria for the primary system. The
optimal time sharing achieves significant gains compared to equal time
allocation between the EH and IT phases.Comment: Proceedings of the 2015 IEEE International Conference on
Communications (IEEE ICC 2015), 8-12 June 2015, London, U
- âŚ