684 research outputs found
Mental state estimation for brain-computer interfaces
Mental state estimation is potentially useful for the development of asynchronous brain-computer interfaces. In this study, four mental states have been identified and decoded from the electrocorticograms (ECoGs) of six epileptic patients, engaged in a memory reach task. A novel signal analysis technique has been applied to high-dimensional, statistically sparse ECoGs recorded by a large number of electrodes. The strength of the proposed technique lies in its ability to jointly extract spatial and temporal patterns, responsible for encoding mental state differences. As such, the technique offers a systematic way of analyzing the spatiotemporal aspects of brain information processing and may be applicable to a wide range of spatiotemporal neurophysiological signals
Optimal time sharing in underlay cognitive radio systems with RF energy harvesting
Due to the fundamental tradeoffs, achieving spectrum efficiency and energy
efficiency are two contending design challenges for the future wireless
networks. However, applying radio-frequency (RF) energy harvesting (EH) in a
cognitive radio system could potentially circumvent this tradeoff, resulting in
a secondary system with limitless power supply and meaningful achievable
information rates. This paper proposes an online solution for the optimal time
allocation (time sharing) between the EH phase and the information transmission
(IT) phase in an underlay cognitive radio system, which harvests the RF energy
originating from the primary system. The proposed online solution maximizes the
average achievable rate of the cognitive radio system, subject to the
-percentile protection criteria for the primary system. The
optimal time sharing achieves significant gains compared to equal time
allocation between the EH and IT phases.Comment: Proceedings of the 2015 IEEE International Conference on
Communications (IEEE ICC 2015), 8-12 June 2015, London, U
Shape and Illumination from Shading Using the Generic Viewpoint Assumption
The Generic Viewpoint Assumption (GVA) states that the position of the viewer or the light in a scene is not special. Thus, any estimated parameters from an observation should be stable under small perturbations such as object, viewpoint or light positions. The GVA has been analyzed and quantified in previous works, but has not been put to practical use in actual vision tasks. In this paper, we show how to utilize the GVA to estimate shape and illumination from a single shading image, without the use of other priors. We propose a novel linearized Spherical Harmonics (SH) shading model which enables us to obtain a computationally efficient form of the GVA term. Together with a data term, we build a model whose unknowns are shape and SH illumination. The model parameters are estimated using the Alternating Direction Method of Multipliers embedded in a multi-scale estimation framework. In this prior-free framework, we obtain competitive shape and illumination estimation results under a variety of models and lighting conditions, requiring fewer assumptions than competing methods.National Science Foundation (U.S.). Directorate for Computer and Information Science and Engineering/Division of Information & Intelligent Systems (Award 1212928)Qatar Computing Research Institut
Learning Mixtures of Gaussians in High Dimensions
Efficiently learning mixture of Gaussians is a fundamental problem in
statistics and learning theory. Given samples coming from a random one out of k
Gaussian distributions in Rn, the learning problem asks to estimate the means
and the covariance matrices of these Gaussians. This learning problem arises in
many areas ranging from the natural sciences to the social sciences, and has
also found many machine learning applications. Unfortunately, learning mixture
of Gaussians is an information theoretically hard problem: in order to learn
the parameters up to a reasonable accuracy, the number of samples required is
exponential in the number of Gaussian components in the worst case. In this
work, we show that provided we are in high enough dimensions, the class of
Gaussian mixtures is learnable in its most general form under a smoothed
analysis framework, where the parameters are randomly perturbed from an
adversarial starting point. In particular, given samples from a mixture of
Gaussians with randomly perturbed parameters, when n > {\Omega}(k^2), we give
an algorithm that learns the parameters with polynomial running time and using
polynomial number of samples. The central algorithmic ideas consist of new ways
to decompose the moment tensor of the Gaussian mixture by exploiting its
structural properties. The symmetries of this tensor are derived from the
combinatorial structure of higher order moments of Gaussian distributions
(sometimes referred to as Isserlis' theorem or Wick's theorem). We also develop
new tools for bounding smallest singular values of structured random matrices,
which could be useful in other smoothed analysis settings
- …
