2 research outputs found
MIL Metal-Organic Frameworks: Synthesis, Post-Synthetic Modifications, and Applications
Au cours des dernières décennies, la communauté scientifique du monde entier a assisté
à l’émergence d’une nouvelle classe de matériaux poreux aux caractéristiques structurelles
et chimiques incontestablement uniques. La découverte des charpentes organométalliques
(MOF) a impressionné la communauté des zéolites et des matériaux poreux. La grande expansion
dans ce domaine a comblé une lacune dans les dimensions des solides poreux. Depuis
lors, les MOF sont en concurrence avec les zéolites et les oxydes métalliques dans diverses
applications, notamment la catalyse, l’adsorption et la séparation de gaz, la photocatalyse
et la détection. Dans cette thèse, les travaux de recherche ont été orientés vers la synthèse,
la caractérisation, la modification post-synthétique et les applications de charpentes métalorganiques.
Ici, nous avons sélectionné trois des MOF de type MIL bien connus. Ils possèdent
tous une structure 3D construite à partir d’ions métalliques trivalents et du lieur ditopique
de l’acide benzènedicarboxylique-1,4 (H2BDC); cependant, ils occupent des filets différents.---------- ABSTRACT
Over the past decades, the scientific community all over the world witnessed the emergence of
a new class of porous materials with unquestionably unique structural and chemical features.
The discovery of metal-organic frameworks (MOFs) impressed the community of zeolites and
porous materials. The great expansion in this field fulfilled a gap in the dimensions of porous
solids. Since then, MOFs have been competing with zeolites and metal oxides in various
applications, including catalysis, gas-adsorption and separation, photocatalysis, and sensing.
In this thesis, research studies were directed towards the synthesis, characterization, postsynthetic
modification, and applications of metal-organic frameworks. Here, we selected three
of the well-known MIL-type MOFs. They all possess a 3D structure built from trivalent metal
ions and the ditopic 1,4-Benzenedicarboxylic acid linker (H2BDC); however, they occupy
different nets
Sonocatalytic Biodiesel Transesterification to Produce a Lubricant
The
growth of the machinery and automotive industry drives interest
toward the production of biolubricants due to their better lubricating
properties and their low carbon footprint compared to petroleum-based
lubricants. However, their traditional synthesis is long and energy-intensive.
We intensified the production of biolubricants from canola oil methyl
esters using ultrasound. NaOH catalyzed the transesterification of
two polyalcohols (propylene and trimethylene glycols). We varied the
ultrasound power, temperature, type of alcohol, and alcohol/biodiesel
molar ratio. Trimethylene glycol produced 90 ± 1.9% of biolubricant
at 80 °C and 62 W with a molar ratio of 0.25. Calcium oxide supported
on silica (CaO/SiO2) also catalyzed the reaction under
optimal conditions. The yield of the CaO/SiO2-catalyzed
reaction was two times lower than that obtained with NaOH. We surveyed
the loading of CaO over SiO2, the catalyst loading in the
reactor, and its leaching and reusability. A mass percentage of 50%
CaO to SiO2 yielded 46 ± 3.2% lubricants at 3% by
weight of the reactants’ total mass. After three reaction cycles,
the ultrasound did not alter the particle size (e.g., mean diameters
of fresh and used catalysts were 31 and 32 ÎĽm, respectively),
but it leached the active sites, which reduced the activity of the
catalyst for successive uses