1,118 research outputs found
Practical, reliable and inexpensive assay of lycopene in tomato products based on the combined use of light emitting diode (LED) and the optothermal window
Light emitting diode (LED) combined with the concept of optothermal window (OW) is proposed as a new approach (LED-OW) to detect lycopene in a wide range of tomato-based products (tomato juice, tomato ketchup, tomato passata and tomato puree). Phytonutrient lycopene is a dominant antioxidant in these products while beta-carotene is present in significantly lower quantities. Therefore for all practical reasons the interfering effect of beta-carotene at 502 nm analytical wavelength can be neglected. The LED-OW method is low-cost and simple, yet accurate and precise. The major attributes of the new method are its rapid speed of response and the fact that no preparation whatsoever of the sample is needed before the analysis. The lycopene found in tomato products studied here varies from 8 mg/100 g to 60 mg/100 g fresh product. Results obtained by LED-OW method were compared to the outcome of conventional, time consuming spectrophotometric methods and the correlation was very good (R = 0.98). Precision of the LED-OW instrumental setup ranged from 0.5 to 7.4%; the RSD achieved for lycopene-richest samples (= 40 mg/100 g) did not exceed 1.7%. Repeatability of analysis by LED-OW was found to vary between 0.7 and 7.1%
Deposition and characterization of copper chalcopyrite based solar cells using electrochemical techniques
Cu(In,Ga)Se2 films were electrodeposited on molybdenum substrates from a single pH buffered bath and annealed in a reducing selenium atmosphere. The opto-electronic properties of the films were characterized using a potentiostatically- controlled three electrode setup and an electrolyte contact. Pulsed illumination was used to determine the carrier type and the speed of photoresponse. Chopped monochromatic illumination was used to measure photocurrent spectra. The electrodeposited copper chalcopyrite films were compared with films prepared by sputtering and spraying techniques
Generation of an ultrastable 578 nm laser for Yb lattice clock
In this paper we described the development and the characterization of a 578 nm laser source to be the clock laser for an Ytterbium Lattice Optical clock. Two independent laser sources have been realized and the characterization of the stability with a beat note technique is presente
Towards Enhancing Traffic Sign Recognition through Sliding Windows
Automatic Traffic Sign Detection and Recognition (TSDR) provides drivers with critical information on traffic signs, and it constitutes an enabling condition for autonomous driving. Misclassifying even a single sign may constitute a severe hazard, which negatively impacts the environment, infrastructures, and human lives. Therefore, a reliable TSDR mechanism is essential to attain a safe circulation of road vehicles. Traffic Sign Recognition (TSR) techniques that use Machine Learning (ML) algorithms have been proposed, but no agreement on a preferred ML algorithm nor perfect classification capabilities were always achieved by any existing solutions. Consequently, our study employs ML-based classifiers to build a TSR system that analyzes a sliding window of frames sampled by sensors on a vehicle. Such TSR processes the most recent frame and past frames sampled by sensors through (i) Long Short-Term Memory (LSTM) networks and (ii) Stacking Meta-Learners, which allow for efficiently combining base-learning classification episodes into a unified and improved meta-level classification. Experimental results by using publicly available datasets show that Stacking Meta-Learners dramatically reduce misclassifications of signs and achieved perfect classification on all three considered datasets. This shows the potential of our novel approach based on sliding windows to be used as an efficient solution for TSR
Native mass spectrometry of human carbonic anhydrase I and its inhibitor complexes
Abstract: Native mass spectrometry is a potent technique to study and characterize biomacromolecules in their native state. Here, we have applied this method to explore the solution chemistry of human carbonic anhydrase I (hCA I) and its interactions with four different inhibitors, namely three sulfonamide inhibitors (AAZ, MZA, SLC-0111) and the dithiocarbamate derivative of morpholine (DTC). Through high-resolution ESI-Q-TOF measurements, the native state of hCA I and the binding of the above inhibitors were characterized in the molecular detail. Native mass spectrometry was also exploited to assess the direct competition in solution among the various inhibitors in relation to their affinity constants. Additional studies were conducted on the interaction of hCA I with the metallodrug auranofin, under various solution and instrumental conditions. Auranofin is a selective reagent for solvent-accessible free cysteine residues, and its reactivity was analyzed also in the presence of CA inhibitors. Overall, our investigation reveals that native mass spectrometry represents an excellent tool to characterize the solution behavior of carbonic anhydrase. Graphic abstract: [Figure not available: see fulltext.]
Reactions of medicinal gold(III) compounds with proteins and peptides explored by electrospray ionization mass spectrometry and complementary biophysical methods
Electrospray ionization mass spectrometry (ESI MS) is a powerful investigative tool to analyze the reactions of metallodrugs with proteins and peptides and characterize the resulting adducts. Here, we have applied this type of approach to four experimental anticancer gold(III) compounds for which extensive biological and mechanistic data had previously been gathered, namely, Auoxo6, Au2phen, AuL12, and Aubipyc. These gold(III) compounds were reacted with two representative proteins, i.e., human serum albumin (HSA) and human carbonic anhydrase I (hCA I), and with the C-terminal dodecapeptide of thioredoxin reductase. ESI MS analysis allowed us to elucidate the nature of the resulting metal–protein adducts from which the main features of the occurring metallodrug–protein reactions can be inferred. In selected cases, MS data were integrated and supported by independent 1HNMR and UV–Vis absorption measurements to gain an overall description of the occurring processes. From data analysis, it emerges that most of the investigated gold(III) complexes, endowed with an appreciable oxidizing character, undergo quite facile reduction to gold(I); the resulting gold(I) species tightly associate with the above proteins/peptides with a remarkable selectivity for free cysteine residues. In contrast, in the case of the less-oxidizing Aubipyc complex, the gold(III) oxidation state is conserved, and a gold(III) fragment still containing the original ligand is found to be associated with the target proteins. It is notable that the C-terminal dodecapeptide of thioredoxin reductase containing the characteristic –Gly–Cys–Sec–Gly metal-binding motif is able in all cases to trigger gold(III)-to-gold(I) reduction. Our investigation allowed us to identify in detail the nature of the gold fragments that ultimately bind the protein targets and determine the exact binding stoichiometry; some insight on the reaction kinetics was also gained. Notably, a few clear correlations could be established between the structure of the metal complexes and the nature of the resulting protein adducts. The mechanistic implications of these findings are analyzed and thoroughly discussed. Overall, the present results set the stage to better understand the real target biomolecules of these gold compounds and elucidate at the atomic level their interaction modes with proteins and peptides
- …