3 research outputs found

    Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids

    No full text
    The treatment of common bile duct (CBD) disorders, such as biliary atresia or ischemic strictures, is restricted by the lack of biliary tissue from healthy donors suitable for surgical reconstruction. Here we report a new method for the isolation and propagation of human cholangiocytes from the extrahepatic biliary tree in the form of extrahepatic cholangiocyte organoids (ECOs) for regenerative medicine applications. The resulting ECOs closely resemble primary cholangiocytes in terms of their transcriptomic profile and functional properties. We explore the regenerative potential of these organoids in vivo\textit{in vivo} and demonstrate that ECOs self-organize into bile duct–like tubes expressing biliary markers following transplantation under the kidney capsule of immunocompromised mice. In addition, when seeded on biodegradable scaffolds, ECOs form tissue-like structures retaining biliary characteristics. The resulting bioengineered tissue can reconstruct the gallbladder wall and repair the biliary epithelium following transplantation into a mouse model of injury. Furthermore, bioengineered artificial ducts can replace the native CBD, with no evidence of cholestasis or occlusion of the lumen. In conclusion, ECOs can successfully reconstruct the biliary tree, providing proof of principle for organ regeneration using human primary cholangiocytes expanded in vitro\textit{in vitro}

    Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro\textit{in vitro} studies of human development using hPSCs

    Get PDF
    Inducible loss of gene function experiments are necessary to uncover mechanisms underlying development, physiology and disease. However, current methods are complex, lack robustness and do not work in multiple cell types. Here we address these limitations by developing single-step optimized inducible gene knockdown or knockout (sOPTiKD or sOPTiKO) platforms. These are based on genetic engineering of human genomic safe harbors combined with an improved tetracycline-inducible system and CRISPR/Cas9 technology. We exemplify the efficacy of these methods in human pluripotent stem cells (hPSCs), and show that generation of sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled individual or multiplexed gene knockdown or knockout in hPSCs and in a wide variety of differentiated cells. Finally, we illustrate the general applicability of this approach by investigating the function of transcription factors (OCT4\textit{OCT4} and T\textit{T}), cell cycle regulators (cyclin D family members) and epigenetic modifiers (DPY30\textit{DPY30}). Overall, sOPTiKD and sOPTiKO provide a unique opportunity for functional analyses in multiple cell types relevant for the study of human development.This work was supported by a European Research Council starting grant Relieve IMDs (281335 to L.V., D.O., N.R.F.H., M.C.F.Z., E.G.); the Cambridge University Hospitals National Institute for Health Research Biomedical Research Center (L.V., N.R.F.H., F.Sa.); the EU Seventh Framework Programme TISSUGEN (278955 to M.C.d.B.); the Wellcome Trust PhD program (PSAG/048 to L.Y.); a British Heart Foundation PhD Studentship (FS/11/77/39327 to A.B.); a research fellowship from the Deutsche Forschungsgemeinschaft [PA 2369/1-1 to M.P.]; and a core support grant from the Wellcome Trust and Medical Research Council to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute (PSAG028). Deposited in PMC for immediate release
    corecore