5 research outputs found

    Data Quality Assessment of Gravity Recovery and Climate Experiment Follow-On Accelerometer

    No full text
    Accelerometers are mainly used to measure the non-conservative forces at the center of mass of gravity satellites and are the core payloads of gravity satellites. All kinds of disturbances in the satellite platform and the environment will affect the quality of the accelerometer data. This paper focuses on the quality assessment of accelerometer data from the GRACE-FO satellites. Based on the ACC1A data, we focus on the analysis of accelerometer data anomalies caused by various types of disturbances in the satellite platform and environment, including thruster spikes, peaks, twangs, and magnetic torque disturbances. The data characteristics and data accuracy of the accelerometer in different operational states and satellite observation modes are analyzed using accelerometer observation data from different time periods. Finally, the data consistency of the accelerometer is analyzed using the accelerometer transplantation method. The results show that the amplitude spectral density of three-axis linear acceleration is better than the specified accuracy (above 10−1 Hz) in the accelerometer’s nominal status. The results are helpful for understanding the characteristics and data accuracy of GRACE-FO accelerometer observations

    Chinese Gravimetry Augment and Mass Change Exploring Mission Status and Future

    No full text
    The satellite gravimetry technology effectively recovers the global Earth’s gravity field. Since 2000s, HL-SST satellite CHAMP, LL-SST satellite GRACE, Gravity Gradient Measurement (GGM) satellite GOCE have been launched successfully, producing some Earth’s gravity models solely from satellites data. However, the space and time resolution of the Earth’s gravity fields do not adequately satisfy scientific objectives. The main reason is that the gravimetry satellites are not enough and observation data insufficient. The paper outlines the current and future status of Chinese gravity satellite missions. The Chinese gravimetry satellite system, named Chinese Gravimetry augment and Mass change exploring mission (ChiGaM), successfully launched in Dec. 2021 after four years of production and over a year of calibration and valiation. The accelerometer, K-band ranging system and the three stellar sensors, among others, were precisely calibrated and trimmed. The satellite mass center was determined and coordinated with the proof center of accelerometer with an accuracy 100μm. The inter-satellite ranging system and BDS/GPS receiver operate together seamlessly. The range and range rate noise is less than 3μm/Hz1/2 and 1μm/s/Hz1/2, respectively, in band of 0.025~0.1Hz. The electrostatic suspension accelerometer is working well. Its high-sensitive axis noise level is 3×10-10 m/s2/Hz1/2 near the frequency 0.1Hz, and 1×10-9 m/s2/Hz1/2 for the less-sensitive axis. Meanwhile the BDS/GPS receiver is used to achieve data for precise orbit determination, yielding an orbit result with accuracy better than 2cm. When compared with KBR observations, the RMS of the bias is less than 1mm. Besides above mission, next gravimetric satellite is being developed now. TQ-2 mission is designed as a totally experimental satellite for gravitational wave detection at low Earth orbit, which can detect the Earth’s gravity field simultaneously. The Bender-type mission is considered the most promising configuration for TQ-2 and consists of two polar satellites and two inclined satellites. Due to the extra observations at the east-west direction derived from the inclined satellite pair, significant improvements has been made in detecting temporal signals with higher accuracy and spatial-temporal resolution. To achieve the scientific goal, the ACC MBW can shift from 0.001~0.1Hz to 0.004~0.1Hz for ACC, and the LRI MBW can shift from 0.01~1Hz to 0.1~1Hz. For future research, a gravimetric potential survey using cold-atomic-clock based on the general relativity theory, cold atom gradiometer should be pursued. Gravimetric technologies should be mined and researched, and the gravimetry satellite constellation should be developed, so as to improve the time resolution and space resolution for meeting the requirements of geophysics, geodesy, earthquake, water resources environment, oceanography, etc

    GPS Partial Ambiguity Resolution Method for Zero-difference Precise Point Positioning

    No full text
    With the development of ambiguity resolution for precise point positioning(PPP) in recent years, it can improve positioning accuracy of PPP with short time observations since ambiguities can be fixed to right integers. However, unacceptable errors would be introduced into coordinate parameters if ambiguities are fixed to wrong integers. It's necessary to investigate the reliability and success rate of ambiguity-fixed PPP. This paper investigates PPP ambiguity fixing method based on zero-differenced fractional-cycle biases(FCBs). A partial ambiguity resolution(PAR) strategy based on cascaded quality control is proposed. Data sets from Europe CORS are used to validate and demonstrate PAR strategy. Results have showed that PPP ambiguity fixing can improve positioning accuracy of hourly PPP solution. When the strategy of PAR is applied, the influence of un-convergence ambiguities can be controlled efficiently and the success rate of PPP ambiguity fixing is improved

    Highly Enantioselective Synthesis of Chiral Succinimides via Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation

    No full text
    We have successfully developed a highly enantioselective hydrogenation of various 3-aryl and 3-methyl maleinimides to access enantiomerically pure 3-substituted succinimides catalyzed by Rh/bisphosphine-thiourea (ZhaoPhos). This efficient catalytic system furnished the desired 3-substituted succinimide products with high yields and enantioselectivities (up to 99% yield, full conversions, almost all 3-aryl succinimide products up to 99% ee, and 3-methyl succinimide with 83% ee). Our catalytic system has a strong substrate tolerance and generality. Whether the N-substituted group of maleinimides is H or other protecting groups, the maleinimides were hydrogenated well (up to >99% ee, 99% yield). Moreover, the hydrogenation succinimide products can be readily utilized for the construction of biologically active molecules, such as chiral amides and pyrrolidines
    corecore