133 research outputs found

    New Bioenergy Yeast Is an Overachiever

    Get PDF
    There\u27s a lot that can be done with a corn cob after the kernels have been removed. Farmers leave the cobs on the field to boost soil quality. Enterprising cooks use the cobs to make jelly. In China, the sugar xylose is extracted from the cob for industrial uses. Liu worked with technician Scott Weber and supervisory microbiologist Michael Cotta on this project. All three researchers are in the Bioenergy Research Unit at the National Center for Agricultural Utilization Research in Peoria, Illinois. The team started the project with a strain of yeast that had been identified in earlier studies on the use of sweet sorghum as a biofeedstock for ethanol production. Then, in the laboratory, they placed this strain in environments that would promote the expression of genetic traits that favor SSF, including adapting to higher temperatures and tolerating cob-derived compounds that interfere with ethanol production. This resulted in the selection of Y-50464. The team compared how quickly Y-50464 and another yeast strain, Y-12632, could release and ferment the sugar in corn cob residues after the xylose had been extracted. Liu’s star newcomer yeast was able to grow and reach its highest cell density in less than 24 hours after the test began. The comparison yeast didn’t grow at all

    New Bioenergy Yeast Is an Overachiever

    Get PDF
    There\u27s a lot that can be done with a corn cob after the kernels have been removed. Farmers leave the cobs on the field to boost soil quality. Enterprising cooks use the cobs to make jelly. In China, the sugar xylose is extracted from the cob for industrial uses. Liu worked with technician Scott Weber and supervisory microbiologist Michael Cotta on this project. All three researchers are in the Bioenergy Research Unit at the National Center for Agricultural Utilization Research in Peoria, Illinois. The team started the project with a strain of yeast that had been identified in earlier studies on the use of sweet sorghum as a biofeedstock for ethanol production. Then, in the laboratory, they placed this strain in environments that would promote the expression of genetic traits that favor SSF, including adapting to higher temperatures and tolerating cob-derived compounds that interfere with ethanol production. This resulted in the selection of Y-50464. The team compared how quickly Y-50464 and another yeast strain, Y-12632, could release and ferment the sugar in corn cob residues after the xylose had been extracted. Liu’s star newcomer yeast was able to grow and reach its highest cell density in less than 24 hours after the test began. The comparison yeast didn’t grow at all

    On Optimal Synchronization of Diffusively Coupled Heterogeneous Van der Pol Oscillators

    Full text link
    This paper proposes a novel method to achieve and preserve synchronization for a set of connected heterogeneous Van der Pol oscillators. Unlike the state-of-the-art synchronization methods, in which a large coupling gain is applied to couple any pair of connected oscillators, the proposed method first casts the whole synchronization process into two phases. The first one considers the period from the beginning to the first instant of synchronization, while the second phase covers the following time in which synchronization must be preserved. It is shown that a large coupling gain is adopted for the first phase, while the averaged coupling gain to preserve the synchronization in the second phase can be reduced significantly by using an offline optimized coupling law. Efficiency and performance of this method are confirmed by a set of numerical tests with different graphs and system dynamics.Comment: To be published in IFAC World Congress, 202

    Language Models as Inductive Reasoners

    Full text link
    Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.Comment: Accepted by EACL 202

    Construction of metal–organic framework-derived Al-doped Na3V2(PO4)3 cathode materials for high-performance rechargeable Na-ion batteries

    Get PDF
    Na3V2(PO4)3 (NVP) has emerged as one of the most promising cathode materials for sodium-ion batteries (SIBs) owing to its high ionic conductivity and high theoretical energy density. However, the inherent inferior conductivity of NVP prevents its achievement of the theoretical energy density even at low rates, thereby limiting the practical application of NVP in massive energy storage. Here, Al3+-doped Na3V2−xAlx(PO4)3 (NVAP) materials derived from aluminum terephthalate (MIL-53(Al)) were synthesized for the first time, and the effects of Al3+ doping on the structural and electrochemical performances of NVP were investigated. The NVAP materials, particularly Na3V1.97Al0.03(PO4)3 (NVAP2), exhibited superior cycling performance and rate capabilities compared with the NVP material. NVAP2 exhibited a good rate capability, with high reversible discharge capacities of 111.6, 110.3, 108.9, 106.6, 103.4, 96.9, and 88.7 mAh g−1 at 0.1, 0.2, 0.5, 1, 2, 5, and 10C rates, respectively. Moreover, the NVAP2 material exhibited a prominent initial discharge capacity of 102.3 mAh g−1 and maintained an excellent capacity retention rate of 92.0% after 2000 cycles at 10C, indicating significant cycling stability. Overall, this work provides an efficient technique for enhancing the electrochemical properties of cathode materials with a sodium superionic conductor structure for SIBs

    Transcriptomic analysis of cell envelope inhibition by prodigiosin in methicillin-resistant Staphylococcus aureus

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a leading threat to public health as it is resistant to most currently available antibiotics. Prodigiosin is a secondary metabolite of microorganisms with broad-spectrum antibacterial activity. This study identified a significant antibacterial effect of prodigiosin against MRSA with a minimum inhibitory concentration as low as 2.5 mg/L. The results of scanning electron microscopy, crystal violet staining, and confocal laser scanning microscopy indicated that prodigiosin inhibited biofilm formation in S. aureus USA300, while also destroying the structure of the cell wall and cell membrane, which was confirmed by transmission electron microscopy. At a prodigiosin concentration of 1.25 mg/L, biofilm formation was inhibited by 76.24%, while 2.5 mg/L prodigiosin significantly reduced the vitality of MRSA cells in the biofilm. Furthermore, the transcriptomic results obtained at 1/8 MIC of prodigiosin indicated that 235and 387 genes of S. aureus USA300 were significantly up- and downregulated, respectively. The downregulated genes were related to two-component systems, including the transcriptional regulator LytS, quorum sensing histidine kinases SrrB, NreA and NreB, peptidoglycan biosynthesis enzymes (MurQ and GlmU), iron-sulfur cluster repair protein ScdA, microbial surface components recognizing adaptive matrix molecules, as well as the key arginine synthesis enzymes ArcC and ArgF. The upregulated genes were mainly related to cell wall biosynthesis, as well as two-component systems including vancomycin resistance-associated regulator, lipoteichoic acid biosynthesis related proteins DltD and DltB, as well as the 9 capsular polysaccharide biosynthesis proteins. This study elucidated the molecular mechanisms through which prodigiosin affects the cell envelope of MRSA from the perspectives of cell wall synthesis, cell membrane and biofilm formation, providing new potential targets for the development of antimicrobials for the treatment of MRSA

    Dynamic Responses of Continuous Girder Bridges with Uniform Cross-Section under Moving Vehicular Loads

    Get PDF
    To address the drawback of traditional method of investigating dynamic responses of the continuous girder bridge with uniform cross-section under moving vehicular loads, the orthogonal experimental design method is proposed in this paper. Firstly, some empirical formulas of natural frequencies are obtained by theoretical derivation and numerical simulation. The effects of different parameters on dynamic responses of the vehicle-bridge coupled vibration system are discussed using our own program. Finally, the orthogonal experimental design method is proposed for the dynamic responses analysis. The results show that the effects of factors on dynamic responses are dependent on both the selected position and the type of the responses. In addition, the interaction effects between different factors cannot be ignored. To efficiently reduce experimental runs, the conventional orthogonal design is divided into two phases. It has been proved that the proposed method of the orthogonal experimental design greatly reduces calculation cost, and it is efficient and rational enough to study multifactor problems. Furthermore, it provides a good way to obtain more rational empirical formulas of the DLA and other dynamic responses, which may be adopted in the codes of design and evaluation

    In situ tuning of dynamical Coulomb blockade on Andreev bound states in hybrid nanowire devices

    Full text link
    Electron interactions in quantum devices can exhibit intriguing phenomena. One example is assembling an electronic device in series with an on-chip resistor. The quantum laws of electricity of the device is modified at low energies and temperatures by dissipative interactions induced by the resistor, a phenomenon known as dynamical Coulomb blockade (DCB). The DCB strength is usually non-adjustable in a fixed environment defined by the resistor. Here, we design an on-chip circuit for InAs-Al hybrid nanowires where the DCB strength can be gate-tuned in situ. InAs-Al nanowires could host Andreev or Majorana zero-energy states. This technique enables tracking the evolution of the same state while tuning the DCB strength from weak to strong. We observe the transition from a zero-bias conductance peak to split peaks for Andreev zero-energy states. Our technique opens the door to in situ tuning interaction strength on zero-energy states

    Gate-Compatible Circuit QED in a Three-Dimensional Cavity Architecture

    Full text link
    Semiconductor-based superconducting qubits offer a versatile platform for studying hybrid quantum devices in circuit quantum electrodynamics (cQED) architecture. Most of these cQED experiments utilize coplanar waveguides, where the incorporation of DC gate lines is straightforward. Here, we present a technique for probing gate-tunable hybrid devices using a three-dimensional (3D) microwave cavity. A recess is machined inside the cavity wall for the placement of devices and gate lines. We validate this design using a hybrid device based on an InAs-Al nanowire Josephson junction. The coupling between the device and the cavity is facilitated by a long superconducting strip, the antenna. The Josephson junction and the antenna together form a gatemon qubit. We further demonstrate the gate-tunable cavity shift and two-tone qubit spectroscopy. This technique could be used to probe various quantum devices and materials in a 3D cQED architecture that requires DC gate voltages
    • …
    corecore