5,721 research outputs found

    Color Behavior Of BL Lacertae Object OJ 287 During Optical Outburst

    Full text link
    This paper aims to study the color behavior of the BL Lac object OJ 287 during optical outburst. According to the revisit of the data from the OJ-94 monitoring project and the analysis the data obtained with the 60/90 cm Schmidt Telescope of NAOC, we found a bluer-when-brighter chromatism in this object. The amplitude of variation tends to decrease with the decrease of frequency. These results are consistent with the shock-in-jet model. We made some simulations and confirmed that both amplitude difference and time delay between variations at different wavelengths can result in the phenomenon of bluer-when-brighter. Our observations confirmed that OJ 287 underwent a double-peaked outburst after about 12 years from 1996, which provides further evidence for the binary black hole model in this object.Comment: 25 pages, 13 figure

    Associated production of the top-pions and single top at hadron colliders

    Full text link
    In the context of topcolor assisted technicolor(TC2) models, we study the production of the top-pions πt0,±\pi_{t}^{0,\pm} with single top quark via the processes ppˉ→tπt0+Xp\bar{p} \to t\pi_{t}^{0}+X and ppˉ→tπt±+Xp\bar{p} \to t\pi_{t}^{\pm}+X, and discuss the possibility of detecting these new particles at Tevatron and LHC. We find that it is very difficult to observe the signals of these particles via these processes at Tevatron, while the neutral and charged top-pions πt0\pi_{t}^{0} and πt±\pi_{t}^{\pm} can be detecting via considering the same sign top pair ttcˉtt\bar{c} event and the ttbˉtt\bar{b} (or ttˉbt\bar{t}b) event at LHC, respectively.Comment: latex files,14 pages, 7 figures. Accepted for publication in Phys. Rev.

    Precision cosmology from future lensed gravitational wave and electromagnetic signals

    Get PDF
    The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein Telescope is expected to produce 104−10510^4-10^5 gravitational wave detections per year, 50−10050-100 of which will be lensed. Here we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68%0.68\% for a flat Lambda Cold Dark Matter universe in the era of third generation ground-based detectors
    • …
    corecore