582 research outputs found
Supercurrent in p-wave Holographic Superconductor
The p-wave and -wave holographic superconductors with fixed DC
supercurrent are studied by introducing a non-vanishing vector potential. We
find that close to the critical temperature of zero current, the
numerical results of both the p wave model and the model are the same as
those of Ginzburg-Landau (G-L) theory, for example, the critical current and the phase transition in the presence of a DC current is
a first order transition. Besides the similar results between both models, the
superconductor shows isotropic behavior for the supercurrent, while the
p-wave superconductor shows anisotropic behavior for the supercurrent.Comment: Version 4. 18 pages, 9figures. New results of the anisotropic
behavior for the supercurrent in p-wave model added. Accepted by PR
Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans
<p>Abstract</p> <p>Background</p> <p>Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms.</p> <p>Results</p> <p>In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast <it>Trichosporon fermentans </it>cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of <it>T. fermentans</it>. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content.</p> <p>Conclusions</p> <p>This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of oleaginous yeast, which is helpful for optimization of biomass hydrolysis processes, detoxified pretreatment of hydrolysates and lipid production using lignocellulosic materials.</p
Efficient Asymmetric Reduction of 4-(Trimethylsilyl)-3-Butyn-2-One by Candida parapsilosis Cells in an Ionic Liquid-Containing System
Hydrophilic ionic liquids (ILs) were employed as green solvents to construct an IL-containing co-solvent system for improving the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one by immobilized Candida parapsilosis cells. Among 14 hydrophilic ILs examined, 1-(2′-hydroxyl)ethyl-3-methylimidazolium nitrate (C2OHMIM·NO3) was considered as the most suitable IL for the bioreduction with the fastest initial reaction rate, the highest yield and the highest product e.e., which may be due to the good biocompatibility with the cells. For a better understanding of the bioreduction performed in the C2OHMIM·NO3-containing co-solvent system, the effects of several crucial variables were systematically investigated. The optimal C2OHMIM·NO3 content, substrate concentration, buffer pH, co-substrate concentration and temperature were 10% (v/v), 3.0 mmol/L, 5.0, 98.1 mmol/L and 30°C, respectively. Under the optimal conditions, the initial reaction rate, the maximum yield and the product e.e. were 17.3 µmol/h gcell, 95.2% and >99.9%, respectively, which are much better than the corresponding results previously reported. Moreover, the immobilized cells remained more than 83% of their initial activity even after being used repeatedly for 10 batches in the C2OHMIM·NO3-containing system, exhibiting excellent operational stability
The Equation of State and Quark Number Susceptibility in Hard-Dense-Loop Approximation
Based on the method proposed in [ H. S. Zong, W. M. Sun, Phys. Rev. \textbf{D
78}, 054001 (2008)], we calculate the equation of state (EOS) of QCD at zero
temperature and finite quark chemical potential under the hard-dense-loop (HDL)
approximation. A comparison between the EOS under HDL approximation and the
cold, perturbative EOS of QCD proposed by Fraga, Pisarski and Schaffner-Bielich
is made. It is found that the pressure under HDL approximation is generally
smaller than the perturbative result. In addition, we also calculate the quark
number susceptibility (QNS) at finite temperature and finite chemical potential
under hard-thermal/dense-loop (HTL/HDL) approximation and compare our results
with the corresponding ones in the previous literature.Comment: 12 pages, 3 figure
Effect of 137 Cs Gamma Rays to Panicles on Rice Anther Culture
Abstract: Panicles of an indica rice line TM7-5 were subjected to radiation with 137 Cs gamma rays at 0 (control), 5, 10, 15 and 20 Gy respectively, and then its anthers were cultured. There were slight differences among the treatments in peak emerging time of callus initiation, from 38 to 44 days after inoculation (DAI) as well as the frequency of callus initiation (2.3-3.5%). About two thirds calli were induced before 44 DAI, and calli derived beyond 60 DAI lost the regeneration ability. Green plant regeneration frequency was significantly stimulated from two-to three-fold by irradiation of the 137 Cs gamma rays compared with the control, and the maximum was 22.81% (15 Gy). The culture ability based on callus initiation and green plantlet regeneration was 0.19% for the control while it was over 0.45% for all the irradiated treatments, and the maximum was 0.59% for 15 Gy treatment. The advantages of panicle irradiation before anther culture and the potential application in rice anther culture, especially for recalcitrant indica rice, were discussed. Key words: anther culture; gamma ray; panicle; radiation; culture ability; rice (Oryza sativa) Anther culture plays an important role in rapid development of homozygous lines and genetic manipulation, especially in isolation of desirable individuals from segregating population in the early generation. The production of new varieties via anther culture shortens the breeding cycle, raises the efficiency of selection, and saves space and labor in the experimental field. For these reasons, intensive research on rice anther culture has been carried out since 1968, when Niizeki and Oono firstly regenerated plantlets from rice anther culture However there are some disadvantages in irradiation of anthers just after inoculation on the callus-initiation medium or anther-derived calli. Firstly, medium suffered from irradiation will produce some toxin substance which will be harmful to either anthers or calli, so that they have to be immediately transferred to fresh medium after irradiation. Secondly, anther-derived calli consist a mixture of haploid and double haploid cells, while radiation-induced mutation will make the homozygous diploid calli return back to heterozygous ones again, and in this case the advantage of anther culture for breeding will be lost. We developed a new radiation way for anther culture that whole panicles were irradiated before anthers were inoculated on callus initiation medium. Here we report the results and the potential application of this method in breeding will be discussed
Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling
BACKGROUND: The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. RESULTS: It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. CONCLUSIONS: Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to free cells could give highly practicable immobilized biocatalyst
Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose
Background: Lignocellulosic biomass is one of earth's most abundant resources, and it has great potential for biofuel production because it is renewable and has carbon-neutral characteristics. Lignocellulose is mainly composed of carbohydrate polymers (cellulose and hemicellulose), which contain approximately 75 % fermentable sugars for biofuel fermentation. However, saccharification by cellulases is always the main bottleneck for commercialization. Compared with the enzyme systems of fungi, bacteria have evolved distinct systems to directly degrade lignocellulose. However, most reported bacterial saccharification is not efficient enough without help from additional β-glucosidases. Thus, to enhance the economic feasibility of using lignocellulosic biomass for biofuel production, it will be extremely important to develop a novel bacterial saccharification system that does not require the addition of β-glucosidases. Results: In this study, a new thermophilic bacterium named Ruminiclostridium thermocellum M3, which could directly saccharify lignocellulosic biomass, was isolated from horse manure. The results showed that R. thermocellum M3 can grow at 60 °C on a variety of carbon polymers, including microcrystalline cellulose, filter paper, and xylan. Upon utilization of these substrates, R. thermocellum M3 achieved an oligosaccharide yield of 481.5 ± 16.0 mg/g Avicel, and a cellular β-glucosidase activity of up to 0.38 U/mL, which is accompanied by a high proportion (approximately 97 %) of glucose during the saccharification. R. thermocellum M3 also showed potential in degrading natural lignocellulosic biomass, without additional pretreatment, to oligosaccharides, and the oligosaccharide yields using poplar sawdust, corn cobs, rice straw, and cornstalks were 52.7 ± 2.77, 77.8 ± 5.9, 89.4 ± 9.3, and 107.8 ± 5.88 mg/g, respectively. Conclusions: The newly isolated strain R. thermocellum M3 degraded lignocellulose and accumulated oligosaccharides. R. thermocellum M3 saccharified lignocellulosic feedstock without the need to add β-glucosidases or control the pH, and the high proportion of glucose production distinguishes it from all other known monocultures of cellulolytic bacteria. R. thermocellum M3 is a potential candidate for lignocellulose saccharification, and it is a valuable choice for the refinement of bioproducts
- …