6 research outputs found

    Loss of ATP2C1 function promotes trafficking and degradation of NOTCH1: Implications for Hailey-Hailey disease

    Get PDF
    Hailey-Hailey disease (HHD) is a rare autosomal dominantly inherited disorder caused by mutations in the ATP2C1 gene that encodes an adenosine triphosphate (ATP)-powered calcium channel pump. HHD is characterized by impaired epidermal cell-to-cell adhesion and defective keratinocyte growth/differentiation. The mechanism by which mutant ATP2C1 causes HHD is unknown and current treatments for affected individuals do not address the underlying defects and are ineffective. Notch signalling is a direct determinant of keratinocyte growth and differentiation. We found that loss of ATP2C1 leads to impaired Notch1 signalling, thus deregulation of the Notch signalling response is therefore likely to contribute to HHD manifestation. NOTCH1 is a transmembrane receptor and upon ligand binding, the intracellular domain (NICD) translocates to the nucleus activating its target genes. In the context of HHD, we found that loss of ATP2C1 function promotes upregulation of the active NOTCH1 protein (NICD-Val1744). Here, deeply exploring this aspect, we observed that NOTCH1 activation is not associated with the transcriptional enhancement of its targets. Moreover, in agreement with these results, we found a cytoplasmic localization of NICD-Val1744. We have also observed that ATP2C1-loss is associated with the degradation of NICD-Val1744 through the lysosomal/proteasome pathway. These results show that ATP2C1-loss could promote a mechanism by which NOTCH1 is endocytosed and degraded by the cell membrane. The deregulation of this phenomenon, finely regulated in physiological conditions, could in HHD lead to the deregulation of NOTCH1 with alteration of skin homeostasis and disease manifestation

    Statistical control of commercial detergents production through fourier transform infra-red spectroscopy

    No full text
    Multivariate statistical control in conjunction with mid-infrared spectroscopy was implemented to monitor the quality of commercial detergents. The approach was developed by estimating the Hotelling T2 and Square Prediction Error Q statistics. A joint analysis of these two scalars has led to the introduction of a bivariate probability density function, which brings to the proposal of a novel normal operating region for the process. The sensitivity to detect abnormal processes is shown to be improved, with a correct identification of the detergent samples out of specifications

    Hypotonic, acidic oxidizing solution containing hypochlorous acid (HClO) as a potential treatment of hailey-hailey disease

    No full text
    Hailey-Hailey disease (HHD) is a rare, chronic and recurrent blistering disorder, characterized by erosions occurring primarily in intertriginous regions and histologically by suprabasal acantholysis. Mutation of the Golgi Ca2+-ATPase ATP2C1 has been identified as having a causative role in Hailey-Hailey disease. HHD-derived keratinocytes have increased oxidative-stress that is associated with impaired proliferation and differentiation. Additionally, HHD is characterized by skin lesions that do not heal and by recurrent skin infections, indicating that HHD keratinocytes might not respond well to challenges such as wounding or infection. Hypochlorous acid has been demonstrated in vitro and in vivo to possess properties that rescue both oxidative stress and altered wound repair process. Thus, we investigated the potential effects of a stabilized form of hypochlorous acid (APR-TD012) in an in vitro model of HHD. We found that treatment of ATP2C1-defective keratinocytes with APR-TD012 contributed to upregulation of Nrf2 (nuclear factor (erythroid-derived 2)-like 2). Additionally, APR TD012-treatment restored the defective proliferative capability of siATP2C1-treated keratinocytes. We also found that the APR-TD012 treatment might support wound healing process, due to its ability to modulate the expression of wound healing associated cytokines. These observations suggested that the APR-TD012 might be a potential therapeutic agent for HHD-lesions

    S.P.Q.R. Legged team

    No full text
    The SPQR (Soccer Player Quadruped Robots, but also Senatus PopolusQue Romanus) team participated for the second time to Sony Legged League in RoboCup 2001. This work is a team description where it will be highlighted what the team development effort focused on: the realization of a motion module, the realization of a vision module and the improvement of the plans which characterize the different robot roles

    PLK1 targets NOTCH1 during DNA damage and mitotic progression

    No full text
    Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor suppressor and oncogenic components. To identify regulators that might control this dual activity of NOTCH1, we screened a chemical library targeting kinases and identified Polo-like kinase 1 (PLK1) as one of the kinases involved in arsenite-induced NOTCH1 down-modulation. As PLK1 activity drives mitotic entry but also is inhibited after DNA damage, we investigated the PLK1-NOTCH1 interplay in the G2 phase of the cell cycle and in response to DNA damage. Here, we found that PLK1 regulates NOTCH1 expression at G2/M transition. However, when cells in G2 phase are challenged with DNA damage, PLK1 is inhibited to prevent entry into mitosis. Interestingly, we found that the interaction between NOTCH1 and PLK1 is functionally important during the DNA damage response, as we found that whereas PLK1 activity is inhibited, NOTCH1 expression is maintained during DNA damage response. During genotoxic stress, cellular transformation requires that promitotic activity must override DNA damage checkpoint signaling to drive proliferation. Interestingly, we found that arsenite-induced genotoxic stress causes a PLK1-dependent signaling response that antagonizes the involvement of NOTCH1 in the DNA damage checkpoint. Taken together, our data provide evidence that Notch signaling is altered but not abolished in SCC cells. Thus, it is also important to recognize that Notch plasticity might be modulated and could represent a key determinant to switch on/off either the oncogenic or tumor suppressor function of Notch signaling in a single type of tumor
    corecore