306 research outputs found

    Portrait of a Stem Cell

    Get PDF
    AbstractThere is great enthusiasm for the potential use of stem cells in treating tissue degenerative disorders, but little is known about the intrinsic molecular programs defining self-renewal and differentiation. New data sets produced by transcriptional profiling of purified stem cell populations begin to establish the nature of “stemness.

    Taking the Stem Cell Debate to the Public

    Get PDF
    In response to the Blackburn and Rowley essay on the President's Council on Bioethics, several thought-provoking opinions on ethical challenges in biomedical research are expressed by prominent stakeholder

    Zebrafish scl functions independently in hematopoietic and endothelial development

    Get PDF
    AbstractThe SCL transcription factor is critically important for vertebrate hematopoiesis and angiogenesis, and has been postulated to induce hemangioblasts, bipotential precursors for blood and endothelial cells. To investigate the function of scl during zebrafish hematopoietic and endothelial development, we utilized site-directed, anti-sense morpholinos to inhibit scl mRNA. Knockdown of scl resulted in a loss of primitive and definitive hematopoietic cell lineages. However, the expression of early hematopoietic genes, gata2 and lmo2, was unaffected, suggesting that hematopoietic cells were present but unable to further differentiate. Using gene expression analysis and visualization of vessel formation in live animals harboring an lmo2 promoter-green fluorescent protein reporter transgene (Tg(lmo2:EGFP)), we show that angioblasts were specified normally in the absence of scl, but later defects in angiogenesis were evident. While scl was not required for angioblast specification, forced expression of exogenous scl caused an expansion of both hematopoietic and endothelial gene expression, and a loss of somitic tissue. In cloche and spadetail mutants, forced expression of scl resulted in an expansion of hematopoietic but not endothelial tissue. Surprisingly, in cloche, lmo2 was not induced in response to scl over-expression. Taken together, these findings support distinct roles for scl in hematopoietic and endothelial development, downstream of hemangioblast development

    A CRISPR/Cas9 Vector System for Tissue-Specific Gene Disruption in Zebrafish

    Get PDF
    SummaryCRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish, it allows the rapid generation of knockout lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knockout and greatly broadens the scope of loss-of-function studies in zebrafish

    Gene duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a

    Get PDF
    The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla) and kit ligand b (kitlb), and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb). In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that functional analysis reveals that most or all of the kita receptor's function in the embryo are promoted by its interaction with kitla. © 2007 Hultman et al
    corecore