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SUMMARY

CRISPR/Cas9 technology of genome editing has
greatly facilitated the targeted inactivation of genes
in vitro and in vivo in awide range of organisms. In ze-
brafish, it allows the rapid generation of knockout
lines by simply injecting a guide RNA (gRNA) and
Cas9 mRNA into one-cell stage embryos. Here, we
report a simple and scalable CRISPR-based vector
system for tissue-specific gene inactivation in zebra-
fish. As proof of principle, we used our vector with the
gata1 promoter driving Cas9 expression to silence
the urod gene, implicated in heme biosynthesis, spe-
cifically in the erythrocytic lineage. Urod targeting
yielded red fluorescent erythrocytes in zebrafish em-
bryos, recapitulating the phenotype observed in the
yquem mutant. While F0 embryos displayed mosaic
gene disruption, the phenotype appeared very pene-
trant in stable F1 fish. This vector system constitutes
a unique tool to spatially control gene knockout and
greatly broadens the scope of loss-of-function
studies in zebrafish.

INTRODUCTION

The clustered regularly interspaced short palindromic repeats

(CRISPR)/Cas9 technology has recently emerged as a powerful

tool for targeted genome editing (Sander and Joung, 2014).

Adapted from an immune mechanism in bacteria (Jinek et al.,

2012), it takes advantage of the RNA-dependent recognition of

specific DNA sequences by Cas9 endonuclease. A chimeric

guide RNA (gRNA) was engineered to comprise both a 30 sec-
ondary structure with the ability to interact with Cas9 and a 50

seed sequence of 20 bases that directs sequence-specific tar-

geting. Cas9 screens the genome and cleaves within sequences

complementary to the seed, provided they are immediately fol-

lowed by the protospacer adjacent motif (PAM) NGG (Sternberg

et al., 2014). Double strand breaks are then repaired via homol-

ogous recombination or non-homologous end-joining, generally

resulting in insertions or deletions (indels) of variable length. Tar-

geting an early exonic sequence frequently leads to gene disrup-

tion through frame-shifts or non-sense mutations. Transfection

of gRNAs and Cas9 mRNA or DNA into bacteria, human, or
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mouse cells was shown to efficiently inactivate target genes

(Cho et al., 2013; Cong et al., 2013; Jiang et al., 2013; Mali

et al., 2013). The CRISPR/Cas9 technology was subsequently

used in mice to observe in vivo loss-of-function phenotypes

and to generate knockout strains (Wang et al., 2013).

In zebrafish, injection of gRNAs and Cas9 mRNA into one-cell

stage embryos similarly yields indels at target sites with relatively

high, although variable, frequencies (Gagnon et al., 2014; Hwang

et al., 2013). Mutations are inheritable due to mosaic targeting of

the germline, allowing rapid establishment of mutant strains.

Since gene inactivation by CRISPR/Cas9 is complete and per-

manent, this technology provides an effective complementary

approach to morpholinos for loss-of-function studies in zebra-

fish, particularly at later stages of development. Mutant lines

are invaluable to analyze gene function in both embryos and

adults. The global loss of some genes is embryonic lethal, mak-

ing them challenging to study in adults, and there is a great need

in the field to create tissue-specific knockouts. We report here a

CRISPR-based vector system that enables stable, tissue-spe-

cific gene inactivation in vivo.
RESULTS

urod Gene Disruption using CRISPR/Cas9 Yields
a Fluorescent Phenotype in Zebrafish Embryos
To test the efficacy of our tissue-specific CRISPR/Cas9 system,

we used an embryonic phenotype resulting from the inactivation

of the urod gene in zebrafish. Urod is an enzyme implicated in

heme biosynthesis. Mutations in the UROD gene were found in

human hepatic cutaneous porphyria; a disorder characterized

by defects in iron metabolism in the liver, skin photosensitivity,

and reduced erythrocytic heme production (Balwani and Des-

nick, 2012). A point mutation in urod identified in the yquem

mutant zebrafish line was shown to recapitulate these features

(Wang et al., 1998). Erythrocytes deficient for urod exhibit strong

red fluorescence due to the accumulation of unprocessed por-

phyrins, which are inherently fluorescent.

We selected two gRNAs that mutated the third and fifth exons

of the urod locus when injected with Cas9mRNA into single-cell

zebrafish embryos, as assessed by the T7E1 mutagenesis assay

(Kim et al., 2009) (Figures S1A, S1B, and 1A–1C). As a control, we

used a gRNA efficiently targeting an irrelevant gene, p53 (Figures

S1A and S1B). We observed that urod targeting led to the

appearance of fluorescent erythrocytes in circulation at 30 hours

post fertilization (hpf) (Figure 1D), mimicking the phenotype seen
Inc.
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B Figure 1. Fluorescent Phenotype Resulting

from CRISPR Targeting of urod

(A) Schematic representation of urod coding

sequence (CDS). The position of the CRISPR

target sequences at the beginning of exons three

and five are indicated.

(B) Outline of the experiment, Cas9 mRNA is in-

jected into one-cell stage embryos along with a

gRNA targeting either urod or p53 as a negative

control (ctrl). Targeted mutation efficiency is as-

sessed by T7E1 assay and sequencing, and the

presence of red fluorescent erythrocytes by

confocal microscopy.

(C) T7E1 mutagenesis assay at the CRISPR target

site in the urod gene. The assay was performed on

genomic DNA from 2 dpf embryos injected at the

one-cell stage withCas9mRNA and either a gRNA

against p53 (negative control) or a gRNA against

urod. Cleavage bands (arrowheads) indicate the

presence of mutations at the target site. See also

Figure S1B.

(D) Confocal images reveal the presence of fluo-

rescent blood cells in urod mosaic knockout em-

bryos at 30 hpf. The black and white insets show a

23 magnification of the red fluorescent signal in

the yolk region. See also Figure S1E.

(E) Most frequent (>1%) mutant urod alleles found

bydeep-sequencing inwholeembryos injectedwith

Cas9 mRNA and urod gRNA. The CRISPR target

sequence is in green andmutations in red. The type

ofmutationand theassociated frequency (in%ofall

mutated alleles) are indicated, large deletion (del).
in yquem mutant fish (Wang et al., 1998). Approximately 70% of

injected embryos displayed a strong or intermediate phenotype

with ten or more fluorescent cells (Figure S1C) and the intensity

of the phenotype correlated with targeting efficiency (Fig-

ure S1D). This phenotype persisted after 2 days post fertilization

(dpf), but was not observed as a consequence of p53 targeting

(Figure S1E). As both gRNAs against urod yielded similar results

in these early studies, subsequent experiments were performed

using gRNA #1 only, unless otherwise noted. Co-injection of

urod mRNA partially rescued the fluorescent phenotype, while

complementation with an mRNA bearing the yquem mutation

did not, demonstrating the specificity of the targeting (Fig-
Developmental Cell 32, 756–76
ure S1C). Finally, we sequenced the

urod CRISPR locus in injected embryos

that displayed a strong fluorescent

phenotype. As previously reported (Gag-

non et al., 2014), a limited number of

different mutations accounted for most

mutant alleles, among which deletions

were the most frequent (Figure 1E).

More than 80% of detected mutations

induced frameshifts and are therefore

likely to be disruptive. Some in-framemu-

tations were found that may not affect

gene function, but since the CRISPR

target sequence is located close to the in-

activating point mutation found in the

yquem mutant, even missense mutations
could affect the activity of the protein. These data demonstrate

the accurate targeting of the urod gene by CRISPR technology.

Construction of an Integratable CRISPR Vector for Gene
Targeting in Zebrafish
The Tol2 technology enables the generation of transgenic lines

by transposase-mediated insertion of a plasmid into the genome

of zebrafish embryos (Kawakami et al., 2004). In order to create a

vector system allowing spatial control of gene inactivation in ze-

brafish, we engineered a Tol2 integratable vector with three key

features (see Figure 2A and Protocol): (1) a zebrafish U6-3 pro-

moter (Halbig et al., 2008) to drive the expression of a gRNA
4, March 23, 2015 ª2015 Elsevier Inc. 757
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Figure 2. Integratable CRISPR Vector for Tissue-Specific Gene Targeting

(A) Schematic representation of the tissue-specific CRISPR vector. Prom denotes any promoter of interest used to drive Cas9 expression in a tissue-restricted

manner. GFP expression in the heart of injected embryos is used as a transgenesismarker. Tol2 indicates transposition sites for the Tol2 transposase, SV40 polyA

sequence (pA). See Figure S2A for the sequence of U6:gRNA, which comprises two BseRI restriction sites allowing easy cloning of any gene-specific target

sequence at the 50 end of the gRNA.

(B) Outline of the experiment, the CRISPR vector is injected into one-cell stage embryos along with Tol2mRNA. Embryos with GFP-positive hearts are sorted at

24 hpf and further analyzed.Cas9 expression is assessed by in situ hybridization ofCas9mRNA, targetedmutation efficiency by T7E1 assay and sequencing, and

the presence of fluorescent red blood cells by confocal microscopy.

(C) Confocal images of embryos injected with Tol2 mRNA and the pcmlc2:GFP, U6:GFP, gata1:Cas9 vector at various time points. Note early (4 hpf) and

ubiquitous (24 hpf) GFP expression.

(D) Representative images show whole mount in situ hybridization (WISH) using an anti-sense RNA probe against Cas9 mRNA in 24 hpf embryos injected with

Tol2mRNA and pcmlc2:GFP, U6:gRNA urod vectors expressing Cas9 under the control of the indicated promoters. Cas9 expression pattern is governed by the

tissue-specificity of the promoters. See also Figure S2B.
scaffold, into which custom seed sequences can be easily

cloned (Figure S2A); (2) a zebrafish codon-optimized Cas9

flanked by two nuclear localization signals (Jao et al., 2013)

that can be placed under the control of either the ubiquitous

ubiquitin (ubi) promoter (Mosimann et al., 2011), the erythro-

cyte-specific gata1 promoter (Long et al., 1997), or the muscle-

specific mylz2 promoter (Storer et al., 2013) using the Gateway

cloning technology (Hartley et al., 2000); and (3) GFP expressed

under the control of the heart-specific cmlc2 promoter, which

serves as a transgenesis marker (Kwan et al., 2007).
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We first assessed the spatio-temporal expression of the U6

promoter by replacing the gRNA scaffold in our vector with a

sequence encoding GFP. After injection of the resulting

pcmlc2:GFP,U6:GFP, gata1:Cas9 vector into one-cell stage em-

bryos, we observed green fluorescence as early as 4 hpf (Fig-

ure 2C). Observation at later stages demonstrated the ubiquitous

activity of the U6 promoter. Cas9 expression was assessed by

in situ hybridization of its mRNA at 24 and 48 hpf. AB embryos

were injected with vectors containing the ubi, gata1, or mylz2

promoters, along with Tol2 mRNA, and sorted for GFP-positive
Inc.



A

B

Figure 3. Tissue-Specific urod Inactivation

using the CRISPR Vector

(A) Confocal images of 30 hpf embryos injected

with Tol2 mRNA and the indicated vectors. The

fluorescent blood phenotype associated with urod

knockout is seen when using the ubiquitous ubi

promoter or the erythrocyte-specific gata1 pro-

moter with the gRNA targeting urod, but not when

using the muscle-specific mylz2 promoter or a

gRNA against p53. See also Figure S3A and

Movie S1.

(B) Most frequent (>1%) mutant urod alleles found

by deep-sequencing in sorted fluorescent red cells

from the blood of embryos injected with the

pcmlc2:GFP, U6:gRNA urod, gata1:Cas9 vector.

The CRISPR target sequence is in green and mu-

tations in red. The type of mutation and the asso-

ciated frequency (in % of all mutated alleles) are

indicated.
hearts at 24 hpf (Figure 2B). As expected, Cas9 displayed a tis-

sue-restricted expression pattern in a mosaic fashion, as is

typical of F0 Tol2 injections (Figures 2D and S2B). We did not

detect any particular toxicity upon expression of our vectors in

embryos apart from that usually associated with the microinjec-

tion of DNA plasmids at the one-cell stage. These experiments

provide functional validation for both tissue-specific promoters

and the U6 promoter in our vector setting.

The CRISPR Vector Allows Tissue-Specific Gene
Disruption in Zebrafish Embryos
Wefirst used theT7E1mutagenesisassay toevaluategene target-

ing. Inwhole embryos, significantmutation rates at the urod target

locus were only detected with the vector containing a gRNA
Developmental Cell 32, 756–76
against urod and the ubi promoter (data

not shown). Since erythrocytes only repre-

sent a small fraction (less than 2%) of the

whole embryo at 2 dpf, the proportion of

urod mutations associated with the gata1

promoter was presumably below the

detection threshold of the assay. We

therefore collected the blood of embryos

injected with the vectors containing

gRNAs against urod or p53 and driving

Cas9 expression under the control of the

gata1 promoter, and could detect efficient

targeting of both genes (Figure S2C). In or-

der to measure the mutation efficiency of

our vectors more quantitatively, we

sequencedPCRamplicons of the targeted

loci by either deep-sequencing or Sanger

sequencing of random clones after TA

cloning. We then generated a mutation in-

dex calculated as the number of mutated

alleles over the total number of sequenced

alleles. There was 25% of alleles that were

foundmutated for bothurodandp53 in the

blood of embryos injected with the

pcmlc2:GFP, U6:gRNA, gata1:Cas9 vec-
tors (Table S1). Major mutations detected by deep-sequencing

are displayed in Figure S2D. We then injected the pcmlc2:GFP,

U6:gRNAurod,mylz2:Cas9construct into Tg(mylz2:mCherry) em-

bryos and similarly observed urod targeting in sorted mCherry-

positive cells at 48 hpf (Figure S2E). There were seven out of 36

sequenced alleles (19%) that displayed mutations at the urod

CRISPR locus (data not shown). These results demonstrate that

the targeting by our vector system is specific based on the pro-

moter used to drive Cas9 expression.

Injection of vectors expressing Cas9 under the control of the

ubiquitious ubi or erythrocyte-specific gata1 promoters with

the U6 promoter driving the expression of a gRNA against urod

recapitulated the fluorescent phenotype associated with urod

inactivation (Figures 3A, S3A, and Movie S1). Similar results
4, March 23, 2015 ª2015 Elsevier Inc. 759



30 hpf

LCR:GFP pcmlc2:GFP
U6:gRNA urod, gata1:Cas9

300 µm

F1

Figure 4. Generation of Transgenic, Tissue-

Specific Knockout Fish

Confocal images of 30 hpf embryos of the

LCR:GFP transgenic line and F1 generation of fish

stably expressing pcmlc2:GFP, U6:gRNA urod,

gata1:Cas9 vector. See also Figure S4A.
were obtainedwith both gRNAs against urod (Figure 1A, data not

shown). In contrast, using a gRNA targeting p53, or a promoter

active in muscle but not blood, mylz2, to drive Cas9 expression

did not result in the appearance of any fluorescent cells. Of

note, the vectors containing ubi and gata1 promoters yielded a

similar distribution of phenotypes, with approximately a third of

injected embryos displaying 50 fluorescent cells or more (Fig-

ure S3B). We sorted fluorescent red cells from embryos injected

with the pcmlc2:GFP, U6:gRNA urod, gata1:Cas9 vector and

sequenced the urod CRISPR locus. 43% of alleles were mutant.

The spectrum of mutations appeared very similar to that result-

ing from the co-injection of Cas9 mRNA and urod gRNA (Fig-

ure 3B). The relatively high number of wild-type alleles detected

may be due to contamination by non-fluorescent cells, amplified

by the fact that most fluorescent cells are dying (see below),

which may introduce a bias during the amplification of the low

amounts of DNA obtained after sorting. Taken together, these

data indicate successful tissue-specific inactivation of the urod

gene.

In an attempt to adapt our system to enable the visualization of

mutant cells in F0 mosaics, we engineered our CRISPR vector to

express a Cas9-T2A-GFP sequence under the control of any tis-

sue-specific promoter of interest (Figure S3C). We removed the

cmlc2:GFP part of the previous vector since GFP marking of the

cells that express Cas9 can serve as a transgenesis marker. In-

jection of the pA2, U6:gRNA urod, gata1:Cas9-T2A-GFP vector

yielded GFP-positive blood cells at 30 hpf and, as expected,

urod targeting resulted in the appearance of red fluorescent

cells. Interestingly, most of the green and red cell populations

did not overlap (Figure S3D). Non-red, green cells likely become

red with targeting as development proceeds. Some of these

green cells may bear non-disruptive urod mutations. Our micro-

scopy showed that most red cells looked fragmented and of

various sizes and shapes, frequently smaller than the expected

size for erythrocytes. The few red fluorescent cells presenting

regular shape and size also appeared of dimer green (Fig-

ure S3D). Diffuse red fluorescence was seen in urod mutants

only, which presumably resulted from the release of porphyrins

after lysis of mutant erythrocytes. This was easily distinguished

from the cellular fluorescence. These observations suggest
760 Developmental Cell 32, 756–764, March 23, 2015 ª2015 Elsevier Inc.
that urod null erythrocytes rapidly die

from the accumulation of fluorescent

heme precursors, consistent with the

clinical syndrome of porphyria.

Stable Expression of the CRISPR
Vector Induces More Penetrant
Gene Inactivation
F0 embryos showing mosaic expression

of cmlc2:GFP were raised to adulthood.
They were then out-crossed to wild-type AB fish. F1 embryos

with GFP-positive hearts were sorted and analyzed. Themajority

of F1 embryos expressingCas9 under the ubi or gata1 promoters

displayed a strong urod null phenotype; i.e., red fluorescent

erythrocytes (Figures 4 and S4A). In order to evaluate the propor-

tion of erythrocytes showing red fluorescence, we examined

age-matched LCR:GFP transgenic embryos which express

GFP in erythrocytes (Ganis et al., 2012). We found that stable

pcmlc2:GFP,U6:gRNAurod, gata1:Cas9 embryos and LCR:GFP

embryos displayed comparable fluorescent phenotypes,

although not all erythrocytes appeared fluorescent in urod mu-

tants (Figure 4). We then collected the blood from F1 embryos

stably expressing pcmlc2:GFP, U6:gRNA urod, gata1:Cas9 at

36 and 48 hpf and analyzed it by fluorescence-activated cell

sorting (FACS). Approximately 15%of thecells appeared fluores-

cent. However, about half of them were dying at 36 hpf (Fig-

ure S4B) and almost all of them were dead at 48 hpf (data not

shown), indicating that the fluorescent cells are extremely fragile

and short-lived. This, combined with the fact that not all cells

become fluorescent simultaneously, may contribute to strongly

underestimate the proportion of urod mutant cells at a given

time point. Accordingly, the T7E1 assay on F1 blood showed

extensive targeting of the locus (Figure S4C). The mutation effi-

ciency observed in F0 was greatly increased in the F1 generation

as measured by sequencing of the targeted locus (Figure S4D).

Around 70%of alleles were foundmutated in the blood of F1 em-

bryos stably expressing the pcmlc2:GFP, U6:gRNA urod, gata1:

Cas9 vector (Table S1). A fraction of the cmlc2:GFP-positive

F1 embryos displayed no or few fluorescent erythrocytes (Fig-

ure S4E). This lack of urod inactivation was associated with

markedly reduced expression of Cas9 as assessed by qPCR in

individual ubi:Cas9 embryos (Figure S4F), likely due to silencing

of the promoter driving Cas9 expression. These results establish

the efficiency of our CRISPR system in stable transgenics.

p53 Inactivation in Erythrocytes Rescues Hematologic
Defects in a Model of Diamond-Blackfan Anemia
We then wanted to assess the ability of our vector system to cor-

rect an existing phenotype in vivo. In Diamond-Blackfan anemia

(DBA), erythroid progenitors die of defects in key ribosomal
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Figure 5. Rescue of an Anemia Phenotype by Erythrocyte-Specific

Targeting of p53

(A) Benzidine staining of rps29�/� embryos injected with a pcmlc2:GFP,

U6:gRNA, gata1:Cas9 vector targeting urod (ctrl) or p53 at 48 hpf.

(B) Quantification of the hemoglobin rescue in rps29�/� embryos. urod (ctrl),

n = 18 and p53, n = 20. Pooled results from two independent experiments.
proteins, which trigger a robust p53 response. In a zebrafish

model of DBA resulting from rps29 deficiency, p53 inactivation

was shown to prevent the death of erythroid progenitors,

and therefore, rescue hemoglobin production (Taylor et al.,

2012). We injected embryos from rps29+/� incrosses with the

pcmlc2:GFP,U6:gRNAp53, gata1:Cas9 vector described above,

using the pcmlc2:GFP, U6:gRNA urod, gata1:Cas9 vector as a

negative control (Figures S2C and S2D). In rps29�/� embryos,

p53 targeting in gata1-positive erythroid progenitors restored

hemoglobin production as assessed by benzidine staining at 48

hpf (Figures 5A and 5B). These results demonstrate the applica-

bility of our CRISPR vector to genetic suppressor screens in vivo.

DISCUSSION

In order to greatly expand the potential applications of the

powerful CRISPR/Cas technology, we have developed a target-
Develo
ing vector that allows for tissue-specific inactivation of a gene.

Using a fluorescent phenotype resulting from the disruption of

the urod gene, we show that the CRISPR/Cas knockout technol-

ogy can be spatially controlled in the blood lineage in zebrafish.

Our vector system allows for the generation of stable zebra-

fish lines with tissue-specific, inheritable gene knockout. This

approach can be utilized to address cell autonomy in loss-of-

function studies, as well as to avoid the embryonic lethality

associated with the global knockout of certain genes, which

complicates the analysis of their functions in vivo.

Technically, our system simply requires a promoter to express

Cas9. While the ubi promoter (Mosimann et al., 2011) allows effi-

cient ubiquitous gene targeting, any promoter showing tissue-

restricted activity can be easily inserted into the vector via the

Gateway cloning technology. Further studies will be necessary

to determine the efficiency of gene inactivation across different

tissue-specific promoters. We have used other promoters suc-

cessfully with this system, such as the mitfa promoter to inacti-

vate genes specifically in melanocytes in our BRAF+/+, p53�/�

zebrafish melanoma model (Patton et al., 2005). Yet, the extent

to which promoter strength can impact targeting efficiency re-

mains unclear. We did observe promoter silencing in some F1

embryos in our experiments, likely due to positional effects

related to the site of integration within the genome and the prox-

imity of the strong cmlc2 promoter. Other transgenic markers

than cmlc2:GFPmay differentially impact the targeting efficiency

of the vector. It is also critical to use a promoter that is truly tis-

sue-specific, as low levels of expression in other tissues may

lead to inactivation in those tissues.

The U6 promoter that drives expression of the gRNA only re-

quires that the gene-specific target sequence starts with a G

so that potential target sites take the form G-(N)20-GG. Thanks

to the relatively low sensitivity of Cas9 recognition to mis-

matches within the 50 end of the seed sequence of gRNAs (Fu

et al., 2013), it is possible to artificially start any seed sequence

with a G, as we did for urod, leaving the existence of a PAM as

the only requirement for the design of target sequences. The

presence of an insertion marker in the vector (here, GFP under

the control of a heart-specific promoter) facilitates sorting of

transgenic animals, while the usual technique consisting of co-

injection of Cas9mRNA and a gRNA requires genotyping efforts.

The overall targeting efficiency of the two methods seems com-

parable in F0 embryos as evaluated by both T7E1 mutagenesis

assays and sequencing of the target locus. The mosaicism of

gene targeting associated with Tol2 transposition of the vector

may prove higher than when RNA is injected, as per usual proce-

dures, particularly owing to the relatively large size of the vector.

However, this disadvantage could be balanced by a greater level

of biallelic inactivation by the vector, since permanent Cas9 and

gRNA expression likely increases the probability of targeting.

The ability to score transient tissue-specific phenotypes using

our CRISPR system is a significant advantage. The technique

should be ideal for the examination of tumor suppressor genes

in cancer models. Other uses for transient expression could be

for genetics in which there is a tissue-specific phenotype. For

instance, a mutation in PAF1 subunit genes leads to a rescue

of the moonshine mutant. It is possible that a tissue-specific

CRISPR to PAF1 would rescue themoonshine phenotype. Tran-

sient tissue-specific CRISPR could be very helpful for a number
pmental Cell 32, 756–764, March 23, 2015 ª2015 Elsevier Inc. 761



of experiments in genetic models. Similar to standard CRISPR

targeting, our vector system may have off-target effects. These

could be identified by sequencing of predicted off-targets. Vali-

dation of an observed phenotype that has not been previously

associated with the loss of the gene of interest may require the

use of additional, independent gRNAs targeting the same gene.

In each cell of a tissue, Cas9 will potentially hit both alleles of

the targeted gene once. Cas9-mediated DNA cleavage does not

always result in gene inactivation since indels can yield silent in-

framemutations. Therefore, not all targeted cells completely lose

expression of the gene of interest, which likely explains why F1

embryos that stably express the vector targeting urod still

display a fraction of non-fluorescent erythrocytes. The resulting

phenotype with this technique may not be as strong as a null

allele. The efficiency of gene inactivation with our vectors is likely

to be lower than in a straight knockout or a conditional knockout

such as the Cre/Lox system in the mouse. This caveat may be

overcome by designing gRNAs directed against essential func-

tional domains of genes in order to increase the disruptive

impact of in-frame mutations. Because gene extinction may

not be fully penetrant in the targeted cell population, screening

for positive phenotypes that arise as a consequence of gene

disruption may prove easier than looking for negative pheno-

types like the loss of a trait in vivo. Nevertheless, this system

allows the observation of a deficiency typically within three

months; right after the F0 generation can mate. This speed

may have an advantage over the standard CRISPR knockout

technique in the zebrafish, as establishing mutant lines requires

further characterization to choose the inactivating alleles, as well

as additional crosses to get homozygous mutants. It is also

considerably faster than the time required to generate condi-

tional knockout mice.

Overall, the flexibility of the tissue-specific CRISPR vector sys-

tem we describe here makes it a versatile tool that can be adapt-

ed to rapidly meet numerous other applications. For example,

multiplexing could be achieved through the insertion of several

U6:gRNA units into the vector. Cas9 variants (e.g., Cas9 nickase

andCas9 fusions) can alsobe utilized.Our vector couldbe further

developed to enable temporal control of gene inactivation and

thus serve as a platform tobroaden the spectrumof genomeedit-

ing technologies in zebrafish. High-throughput loss-of-function

screens have been performed in vitro using the CRISPR technol-

ogy (Koike-Yusa et al., 2014;Wanget al., 2014; Zhou et al., 2014).

Due to its ease of use, our vector system is amenable to in vivo

screening strategies. Finally, since the Tol2 transposon technol-

ogy has proved effective in cells from a range of vertebrate spe-

cies including mouse, chicken, Xenopus, and medaka fish, our

approach may apply to model organisms other than zebrafish.
EXPERIMENTAL PROCEDURES

DNA Constructs

We cloned the zebrafishU6-3 promoter (Halbig et al., 2008) from the AB strain,

followed by an NheI site, into the pcmlc2:GFP destination vector from the

Tol2kit (Kwan et al., 2007) using ClaI and KpnI enzymes. The gRNA scaffold

used by the Joung Laboratory (Hwang et al., 2013) was modified to replace

BsaI enzyme sites by BseRI sites and inserted at the transcription start site

of the U6 promoter using NheI and KpnI enzymes. This resulted in a

pcmlc2:GFP, U6:gRNA destination vector. The pcmlc2:GFP vector had previ-

ously beenmutated to eliminate a BseRI site present in theGFP sequence. The
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two BseRI enzyme sites at the 50 end of the gRNA scaffold enable easy cloning

of any 20-base-pairs (bp) target sequence of interest. The same method was

employed to generate a pA2, U6:gRNA destination vector.

We then constructed aMiddle Entry vector containing theCas9 (codon-opti-

mized for zebrafish) developed by the Chen Laboratory (Jao et al., 2013), in

which the BseRI site has also been mutated. The multisite Gateway cloning

technology (Hartley et al., 2000) thus allows the introduction of Cas9 with a

polyA tail under any promoter of interest into pcmlc2:GFP,U6:gRNA in a single

cloning step. We similarly constructed a Middle Entry clone containing Cas9

followed by the sequence of a self-cleaving T2A peptide and GFP in which

the BseRI site had been mutated. This Cas9-T2A-GFP sequence can be intro-

duced into the pA2, U6:gRNA vector under any promoter of interest by

Gateway cloning. See Protocol for detailed cloning instructions.

mRNA and gRNA Synthesis

Cas9 mRNA was produced by in vitro transcription from a pCS2 Cas9 vector

(Jao et al., 2013) using mMESSAGE mMACHINE SP6 Kit (Invitrogen). gRNAs

were generated following established methods (Hwang et al., 2013).

urod cDNAwas amplified by PCR from a cDNA library established fromwild-

type AB embryos using the following primers: GAATGGATAAGGACAGTTTCA

and GCTTAGCGTTTGAGAAGCT. The cDNA sequence was then cloned into a

Middle Entry clone for Gateway and inserted into the pDestTol2pA2 vector

between an SP6 promoter and a polyA sequence. The yquem mutation was

introduced using Q5 Site-Directed Mutagenesis Kit (NEB) with primers

GTGTAGGAGACAGGCTGGA and CACACTGGAATGTGCTCGAT. urodwt

and urodyq mRNAs were produced by in vitro transcription using mMESSAGE

mMACHINE SP6 Kit (Invitrogen).

Microinjections

Zebrafish were handled according to our vertebrate animal protocol that has

been approved by Boston Children’s Hospital Animal Care Committee and in-

cludes detailed experimental procedures for all in vivo experiments described

in this paper. Zebrafish of AB strain were bred and embryos were collected for

microinjection. There were 20 picograms (pg) of DNA constructs and 20 pg of

Tol2mRNA that were injected into one-cell stage embryos. For typical CRISPR

experiments, 600 pg ofCas9mRNA and 25 pg of gRNAwere injected into each

embryo. There were 50 pg of urod mRNA that were co-injected for rescue ex-

periments. Post microinjection, embryos were raised in E3 medium at 28.5�C.

Whole-Mount In Situ Hybridization and Benzidine Staining

We cloned a 713 bp fragment from the 30 end of Cas9 into pCRII-TOPO vector

(Invitrogen) using primers CCCTAAGAAGTATGGAGGCT and GCTGAGACAG

GTCAATCCTT and synthesized both the sense and anti-sense RNA probes by

in vitro transcription. In situ hybridization was performed following established

protocols (Thisse and Thisse, 2008).

Benzidine staining was performed as previously described (Paffett-Lugassy

and Zon, 2005).

Imaging

Embryos were mounted in 0.8% low melting point agarose containing tricaine

(160 mg/L) and imaged using Yokogawa CSU-X spinning disk confocal and

inverted Nikon Eclipse Ti microscope (Andor Technologies).

T7E1 Mutagenesis Assay

T7E1 assay was performed as reported (Kim et al., 2009). Briefly, genomic

DNA was extracted from 2-day-old embryos using the HotSHOT method.

A fragment of approximately 400 bp was amplified from genomic DNA using

the following primers.

For urod,

first gRNA: CTTACACAATCACAAGCCTT and CAACATTACATCAAC

AACCC

second gRNA: GTCCCTCAGGTCATTATTGT and CCTTCTTGCAGTGAA

GTGAA

For p53,

GGCACATATGCAAACAGATT and CAAACACCCAGAAATCTCTA
Inc.



The PCR amplicons were then purified on a 1% agarose gel. There were 200

nanograms of purified DNA that were denatured at 95�C for 5 minutes and

slowly reannealed prior to digestion with ten units of T7E1 enzyme (NEB) for

1 hr at 37�C. The digestion product was finally run on a 2.5% agarose gel.

FACS

For fluorescence analysis and/or cell sorting from whole embryos, embryos

were dissociated first mechanically using a razor blade, then enzymatically

using Liberase at 37�C for 15–20 min (Roche). The reaction was stopped by

addition of FBS. The cells were pelleted by centrifugation and resuspended

in PBS. Finally, the cell suspension was filtered (40 mm) prior to analysis.

FACS analysis was performed using an LSR FORTESSA (BD Biosciences),

and FACS sorting was performed using a FACSAria II (BD Biosciences). Flow

cytometry data were analyzed using FACSDiva (BD Biosciences) and FlowJo

softwares (FlowJo Enterprise). The red fluorescence was best detected in the

PE-Cy5 channel. DNA was extracted from sorted cells using QuickExtract

solution (Epibio) following manufacturer’s instructions.

FACS data are accessible through FlowRepository, ID# FR-FCM-ZZWX.

Deep Sequencing

DNA libraries were prepared from the same PCR amplicons as for the T7E1

assay, using Nextera XT DNA Sample Prep Kit (Illumina). Sequencing was

performed on the MiSeq System (Illumina). For the analysis of sequencing

data, the raw reads were first trimmed based on FASTQ quality score (>30).

Trimmed reads with a minimum length of 100 were aligned with urod

sequence �200 to +200 around Cas9 cleavage site using BLAT (Kent,

2002), with tile size 11, no mismatch within tile, and minScore of 30. The query

sequences that aligned to both the left and right flanking regions of Cas9 cleav-

age site were finally analyzed to identify SNP, insertion, deletion, or other types

of mutations.

qPCR

RNA was extracted from single 50 hpf embryos using RNeasy Mini Kit

(QIAGEN). cDNA was synthesized using SuperScript III Kit (Invitrogen).

qPCR was performed using SsoFast EvaGreen supermix and CFX384 Real-

Time System (Biorad) with the following primers:

For Cas9, AGGCCCCTGATTGAGACAAA and AGTGGGAGAGTCAAA

GCCTC

For b-actin, CGAGCAGGAGATGGGAACC and CAACGGAAACGCTC

ATTGC
ACCESSION NUMBERS
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