5 research outputs found

    Influence of Spine Curvature on the Efficacy of Transcutaneous Lumbar Spinal Cord Stimulation

    No full text
    Transcutaneous spinal cord stimulation is a non-invasive method for neuromodulation of sensorimotor function. Its main mechanism of action results from the activation of afferent fibers in the posterior roots—the same structures as targeted by epidural stimulation. Here, we investigated the influence of sagittal spine alignment on the capacity of the surface-electrode-based stimulation to activate these neural structures. We evaluated electromyographic responses evoked in the lower limbs of ten healthy individuals during extension, flexion, and neutral alignment of the thoracolumbar spine. To control for position-specific effects, stimulation in these spine alignment conditions was performed in four different body positions. In comparison to neutral and extended spine alignment, flexion of the spine resulted in a strong reduction of the response amplitudes. There was no such effect on tibial-nerve evoked H reflexes. Further, there was a reduction of post-activation depression of the responses to transcutaneous spinal cord stimulation evoked in spinal flexion. Thus, afferent fibers were reliably activated with neutral and extended spine alignment. Spinal flexion, however, reduced the capacity of the stimulation to activate afferent fibers and led to the co-activation of motor fibers in the anterior roots. This change of action was due to biophysical rather than neurophysiological influences. We recommend applying transcutaneous spinal cord stimulation in body positions that allow individuals to maintain a neutral or extended spine

    Kinetic Gait Parameters in Unilateral Lower Limb Amputations and Normal Gait in Able-Bodied: Reference Values for Clinical Application

    No full text
    Unilateral lower limb amputations usually present with asymmetric interlimb gait patterns, in the long term leading to secondary physical conditions and carrying the risk of low physical activity and impairment of general health. To assess prosthetic fittings and rehabilitation measures, reference values for asymmetries as well as the most significant gait parameters are required. Kinetic gait data of 865 patients with unilateral lower limb amputations (hip and knee disarticulations, transfemoral, transtibial and foot amputations) and 216 able-bodied participants were quantitatively assessed by instrumented gait analyses. Characteristic spatiotemporal (stance time, walking speed, step length and width) and ground reaction force parameters (weight-acceptance and push-off peak) were contrasted to normal gait. All spatiotemporal and ground reaction force parameters differed significantly from normal gait with the largest differences in transfemoral amputations. These also differed between amputation levels and showed age-dependencies. The stance time and push-off peak difference were identified as the most discriminative parameters with the highest diagnostic specificity and sensitivity. The present results mark the first step to establishing universal reference values for gait parameters by means of which the quality and suitability of a prosthetic fitting and the rehabilitation progress can be assessed, and are generalizable for all adults with unilateral lower limb amputations in terms of level walking
    corecore