30 research outputs found

    Programmable material testing device for mechanoluminescence measurements

    Get PDF
    Mechanoluminescent materials transform mechanical energy into visible light. Phenomena could prove to be advantageous to various next-generation monitoring systems employed in the fields of security and healthcare if the intrinsic mechanisms are fully understood. Scientific efforts are mainly hindered by the lack of equipment capable of controlled mechanical deformation and simultaneous collection of light emitted by the sample. This article describes an easily constructible material testing device (508 €) with an interchangeable test fixture and an integrated load cell made from readily available mechanical components and 3D printed parts. A commercial low-cost alternative to spectroscopic apparatus (200 €) has recently become available alongside a highly capable 16-bit CMOS camera intended for low light conditions (520 €). A highly modular prototype system with an overall cost much lower than commercial alternatives that provide less functionality could enable a larger portion of scientific personnel to contribute to a novel field of research. --//-- This is an open access article under the CC BY licence.This work was supported by the Institute of Solid State Physics, University of Latvia [grant number SJZ/2020/13, 2020.- 2021.] and the European Regional Development Fund [grant number 1.1.1.1/20/A/138, 2021.-2023.]. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No.739508, project CAMART2

    Synthesis of Eu2+ and Dy3+ doped strontium aluminates and their properties

    Get PDF
    Financial support to this project was provided by National Research Programme (IMIS2).Strontium aluminate phosphors were synthesized by the solution combustion method using citric acid, urea or glycine as reducing agent and europium and dysprosium as dopants. The content of both dopants was in the range of 1-2 mol%. Dependence of phase composition, crystallite size and specific surface area on calcinations temperature, used reducing agents and dopants were determined. Luminescent properties of the calcinated at 1300 °C powders contained SrAl2O4 (90 %) and Sr4Al24O25 (10%) phases with crystallite size of 80 nm were determined.IMIS2; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Towards metal chalcogenide nanowire-based colour-sensitive photodetectors

    Get PDF
    Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2016/6 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. Authors are grateful to Reinis Ignatans for XRD measurements.In recent years, nanowires have been shown to exhibit high photosensitivities, and, therefore are of interest in a variety of optoelectronic applications, for example, colour-sensitive photodetectors. In this study, we fabricated two-terminal PbS, In2S3, CdS and ZnSe single-nanowire photoresistor devices and tested applicability of these materials under the same conditions for colour-sensitive (405 nm, 532 nm and 660 nm) light detection. Nanowires were grown via atmospheric pressure chemical vapour transport method, their structure and morphology were characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), and optical properties were investigated with photoluminescence (PL) measurements. Single-nanowire photoresistors were fabricated via in situ nanomanipulations inside SEM, using focused ion beam (FIB) cutting and electron-beam-assisted platinum welding; their current-voltage characteristics and photoresponse values were measured. Applicability of the tested nanowire materials for colour-sensitive light detection is discussed.ISSP UL Nr. SJZ/2016/6; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Niobium enhanced europium ion luminescence in hafnia nanocrystals

    Get PDF
    This work was supported by the UL ISSP grant for Scientific Research Projects for Students and Young Researchers SJZ/2016/15 .In this work we demonstrate a method where by adding Nb ions, Ln3+ ion luminescence intensity in HfO2 is increased for up to 15 times (in a sample containing 5 mol%Eu). The effect is described as niobium acting as a charge compensator and neutralizing the charge resulting from Ln3+ ion insertion in Hf4+ site and hence reducing the number of defects present. This is the second system where such an effect was observed, so it is expected that other metal oxides would show the same effect. The optical properties of HfO2: Eu3+ and HfO2: Eu3+, Nb5+, synthesized using the sol-gel method and annealed at various temperatures are studied. A conclusion that the structure of hafnia does not affect luminescence intensity directly and a larger role is played by factors such as defect presence and the size of the particles is drawn based on XRD and TSL measurements. Time-resolved luminescence measurements were also carried out and significant changes depending on dopant concentration and annealing temperatures were observed. Judd Ofelt theory was used to determine quantum efficiency and the local symmetry of Eu3+ ion sites.ISSP UL SJZ/2016/15; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    X-ray excited luminescence of SrAl2O4:Eu,Dy at low temperatures

    Get PDF
    This research project was supported ïŹnancially by ERDF Project No 1.1.1.1/16/A/182.ERDF Project No 1.1.1.1/16/A/182; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Electronic processes in doped ZnO nanopowders

    Get PDF
    The financial support of research grants ERA.NET RUS_ST20170-051 and SFERA II project “Transnational Access activities” (EU 7th Framework Programme Grant Agreement N312643). This work was partly supported by the Russian Foundation for Basic Research, project no. 18-52-76002.ZnO nanocrystals, undoped and doped with Iridium or Indium were prepared by solar irradiation in Heliotron reactor in PROMES CNRS facilities, France. The comparative analysis of the excitonic spectra of ZnO single crystal and ZnO nanocrystals (NCs) doped with In and Ir was performed. It is shown that the excitonic processes in Ir doped nanocrystals coincide well with electronic processes in undoped NC and single crystal; however, the electronic processes in In-doped nanocrystals are significantly different from those in single crystal. The radioluminescence spectra of ZnO:In was analysed and additional luminescence band at ∌3.18 eV was detected due to In-doping. The luminescence decay time depends on In concentration in nanocrystals and is significantly less in ZnO:In compared with undoped nanocrystals. The fast scintillation of ZnO:In makes this material promising for application.Russian Foundation for Basic Research 18-52-76002; Seventh Framework Programme N312643; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Examining the Effect of Cu and Mn Dopants on the Structure of Zinc Blende ZnS Nanopowders

    Get PDF
    The financial support of the European Regional Development Fund (ERDF) Project No. 1.1.1.1/20/A/060 is greatly acknowledged. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III and we would like to thank Edmund Welter for assistance in using the P65 beamline. Beamtime was allocated for proposals I-20210366 EC and I-20220381. The Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.It is known that doping zinc sulfide (ZnS) nanoparticles with Mn or Cu ions significantly affects their luminescent properties. Herein, we investigated how dopant atoms are incorporated into the structure of ZnS using X-ray diffraction and multi-edge X-ray absorption spectroscopy. The observed broadening of the X-ray diffraction patterns indicates an average crystallite size of about 6 nm. By analyzing the Zn, Mn, and Cu K-edge extended X-ray absorption fine structure (EXAFS) spectra using the reverse Monte Carlo method, we were able to determine the relaxations of the local environments around the dopants. Our findings suggested that upon the substitution of Zn by Mn or Cu ions, there is a shortening of the Cu–S bonds by 0.08 Å, whereas the Mn–S bonds exhibited lengthening by 0.07 Å. These experimental results were further confirmed by first-principles density functional theory calculations, which explained the increase in the Mn–S bond lengths due to the high-spin state of Mn2+ ions. --//--Kuzmin, A.; Pudza, I.; Dile, M.; Laganovska, K.; Zolotarjovs, A. Examining the Effect of Cu and Mn Dopants on the Structure of Zinc Blende ZnS Nanopowders. Materials 2023, 16, 5825. https://doi.org/10.3390/ma16175825 Published under the CC BY 4.0 license.European Regional Development Fund (ERDF) Project No. 1.1.1.1/20/A/060; The Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    On low-temperature luminescence quenching in Gd3(Ga,Al)5O12:Ce crystals

    Get PDF
    The work was supported by the ERDF funding in Estonia granted to the Center of Excellence TK141 “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelec-tronics“ (project No. 2014-2020.4.01.15-0011). Partial support of the projects from the Ministry of Education, Youth and Sports of the Czech Republic no. LO1409, LM2015088 and CZ.02.1.01/0.0/0.0/16 013/ 0001406 is also gratefully acknowledged.Temperature dependences of the photoluminescence and X-ray excited luminescence intensity and thermally stimulated luminescence glow curves are measured in the 4.2–300 K temperature range for the undoped and Ce3+ - doped Gd3(Ga,Al)5O12 crystals. The conclusion is made that no low-temperature quenching of the Ce3+ - related photoluminescence takes place. In both the undoped and the Ce3+ - doped crystals, temperature dependences of the X-ray excited recombination luminescence intensity correlate with the position and shape of thermally stimulated luminescence glow curve peaks of the hole origin. Low-temperature quenching of the X-ray excited luminescence in these crystals is explained by the fact that at low temperatures, free holes are trapped at oxygen ions while electrons are trapped at various intrinsic defects. In Ce3+ - doped Gd3(Ga,Al)5O12 crystals, thermally stimulated release of the trapped holes and electrons and their subsequent recombination at Ce3+ ions result in the enhancement of the Ce3+ - related electron recombination luminescence with the increasing temperature in the 10–180 K range.ERDF TK141 No. 2014-2020.4.01.15-0011; Ministry of Education, Youth and Sports of the Czech Republic no. LO1409, LM2015088 and CZ.02.1.01/0.0/0.0/16 013/ 0001406; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Luminescence of X-ray induced radiation defects in modified lithium orthosilicate pebbles with additions of titanium dioxide

    Get PDF
    The authors greatly acknowledge the technical and experimental support of O. Leys, M. H. H. Kolb, and R. Knitter (Karlsruhe Institute of Technology, Germany). The work is performed in the frames of the University of Latvia financed project No. Y9-B044-ZF-N-300, “Nano, Quantum Technologies, and Innovative Materials for Economics”.Modified lithium orthosilicate (Li4SiO4) pebbles with additions of titanium dioxide (TiO2) are designed as a possible tritium breeder ceramic for the helium cooled pebble bed (HCPB) test blanket module. Additions of TiO2 were chosen to enhance mechanical properties of the tritium breeder pebbles. The formation of radiation defects (RD) in the modified Li4SiO4 pebbles with a different content of TiO2 was studied by X-ray induced luminescence (XRL) technique. After XRL measurements the accumulated RD were also analyzed by thermally stimulated luminescence (TSL) and electron spin resonance (ESR) spectrometry. XRL spectra consist of several bands with maxima at around 430, 490, 690, 700 and 800 nm. The XRL band with a peak at 490 nm could be associated with intrinsic defects in Li4SiO4 matrix whereas all the other maxima at lower photon energies are the result of the addition of TiO2.Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Luminescence of X-ray induced radiation defects in modified lithium orthosilicate pebbles with additions of titanium dioxide

    Get PDF
    The authors greatly acknowledge the technical and experimental support of O. Leys, M. H. H. Kolb, and R. Knitter (Karlsruhe Institute of Technology, Germany). The work is performed in the frames of the University of Latvia financed project No. Y9-B044-ZF-N-300, “Nano, Quantum Technologies, and Innovative Materials for Economics”.Modified lithium orthosilicate (Li4SiO4) pebbles with additions of titanium dioxide (TiO2) are designed as a possible tritium breeder ceramic for the helium cooled pebble bed (HCPB) test blanket module. Additions of TiO2 were chosen to enhance mechanical properties of the tritium breeder pebbles. The formation of radiation defects (RD) in the modified Li4SiO4 pebbles with a different content of TiO2 was studied by X-ray induced luminescence (XRL) technique. After XRL measurements the accumulated RD were also analyzed by thermally stimulated luminescence (TSL) and electron spin resonance (ESR) spectrometry. XRL spectra consist of several bands with maxima at around 430, 490, 690, 700 and 800 nm. The XRL band with a peak at 490 nm could be associated with intrinsic defects in Li4SiO4 matrix whereas all the other maxima at lower photon energies are the result of the addition of TiO2.Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
    corecore