23 research outputs found

    Features of particle synthesis at metal wire dispersion

    Get PDF
    Features of particle synthesis under simultaneous dispersion of copper and nickel wires were investigated using a molecular dynamics method. The dynamics of wire dispersion, the size and phase composition of synthesized particles depend on the internal structure of dispersed metal wires and the distance between them. The main mechanism of particle synthesis was agglomeration of sputtered clusters, which predominated over the atom deposition from the gas phase on the particle surface. Synthesized particles were characterized by a nonuniform distribution of chemical elements along their cross section. The subsurface region had a higher concentration of copper in comparison with the particle volume. The molecular dynamics simulation of the metal wire dispersion allows finding optimal loading parameters for the synthesis of particles with desirable size and internal structure

    Peculiarities of plastic deformation nucleation in copper under nanoindentation

    Get PDF
    The computer simulation results on the atomic structure of the copper crystallite and its behavior in nanoindentation demonstrate the key role of local structural transformations in nucleation of plasticity. The generation of local structural transformations can be considered as an elementary event during the formation of higher scale defects, including partial dislocations and stacking faults. The cause for local structural transformations, both direct fcc-hcp and reverse hcp-fcc, is an abrupt local increase in atomic volume. A characteristic feature is that the values of local volume jumps in direct and reverse structural transformations are comparable with that in melting and lie in the range 5–7%

    Plastic deformation nucleation in elastically loaded CuNi alloy during nanoindentation

    Get PDF
    The molecular dynamics simulation of the behavior of elastically loaded CuNi alloy at nanoindentation is carried out. It is shown that the stoichiometric composition and the preliminary elastic deformation influence characteristics of the nucleation of plastic deformation. Under tension of specimens with a low concentration of nickel, the nucleation of plastic deformation is determined by the formation of stacking faults. The formation of nanotwins makes a significant contribution to the nucleation of plasticity at high concentrations of nickel. The increase of the degree of preliminary elastic deformation of the crystallites leads to a decrease in the depth of indentation at which structural defects start to form

    Plastic deformation nucleation in BCC crystallites under nanoindentation

    Get PDF
    Molecular dynamics investigation of metal crystallite with bcc lattice under nanoindentation was carried out. Potentials of interatomic interactions were calculated on the base of the approximation of the Finnis-Sinclair method. For clarity and simpler indentation data interpretation, an extended cylindrical indenter was used in the investigation. The features of the bcc iron structural response at nanoindentation of surfaces with different crystallographic orientations were revealed. Generation of structural defects in the contact zone always resulted in the decrease in the rate of growth of the reaction force

    Mobility of edge dislocations in stressed iron crystals during irradiation

    Get PDF
    The behavior of a/2(111){110} edge dislocations in iron in shear loading and irradiation conditions was studied by means of molecular dynamics simulation. Edge dislocations were exposed to shock waves formed by atomic displacement cascades of different energies. It was shown that starting from a certain threshold amplitude shock waves cause displacement of edge dislocations in the loaded samples. Calculations showed that the larger the shear load and the amplitude of the shock wave, the greater the displacement of dislocations in the crystallite

    Simulation of nanoparticle formation under synchronous electric pulse explosion of metal wires

    Get PDF
    The paper is devoted to molecular dynamics simulation of the formation of bicomponent nanoparticles in simultaneous electric explosion of copper and nickel conductors. The influence of the distance between conductors on failure dynamics and nanoparticle formation is studied. It is shown that simultaneous electric explosion of metallic conductors makes possible the formation of bicomponent particles. Varying the distance between conductors allows one to control the structure of formed bicomponent particles. An increase in the viscosity of the environment in which conductors are exploded increases the size of formed particles

    The role of the excess volume at the nucleation of plastic deformation in metals

    Get PDF
    The computer simulation results on the atomic structure of the copper crystallite and its behavior in nanoindentation demonstrate the key role of local structural transformations in nucleation of plasticity. The generation of local structural transformations can be considered as an elementary event during the formation of higher scale defects, including partial dislocations and stacking faults. The cause for local structural transformations, both direct fcc-hcp and reverse hcp-fcc, is an abrupt local increase in atomic volume. A characteristic feature is that the values of local volume jumps in direct and reverse structural transformations are comparable with that in melting and lie in the range 5-7 %
    corecore