50 research outputs found

    Effects of a feeding strategy to increase intramuscular fat content of pork under the conditions of organic farming

    Get PDF
    In an ongoing study, the effect of the implementation of a specific feeding strategy using a high portion of home-grown grain legumes on the intramuscular fat (IMF) content of pork, is assessed under different conditions on organic farms in Germany and Austria. Preliminary results indicate that variation in the IMF content seems to be higher between farms than between treatments within each farm

    Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis

    Get PDF
    Dietary manipulation of animal diets by reducing crude protein (CP) intake is a strategic NH3 abatement option as it reduces the overall nitrogen input at the very beginning of the manure management chain. This study presents a comprehensive meta-analysis of scientific literature on NH3 reductions following a reduction of CP in cattle and pig diets. Results indicate higher mean NH3 reductions of 17 ± 6% per %-point CP reduction for cattle as compared to 11 ± 6% for pigs. Variability in NH3 emission reduction estimates reported for different manure management stages and pig categories did not indicate a significant influence. Statistically significant relationships exist between CP reduction, NH3 emissions and total ammoniacal nitrogen content in manure for both pigs and cattle, with cattle revealing higher NH3 reductions and a clearer trend in relationships. This is attributed to the greater attention given to feed optimization in pigs relative to cattle and also due to the specific physiology of ruminants to efficiently recycle nitrogen in situations of low protein intake. The higher NH3 reductions in cattle highlights the opportunity to extend concepts of feed optimization from pigs and poultry to cattle production systems to further reduce NH3 emissions from livestock manure. The results presented help to accurately quantify the effects of NH3 abatement following reduced CP levels in animal diets distinguishing between animal types and other physiological factors. This is useful in the development of emission factors associated with reduced CP as an NH3 abatement option

    Consequences from Land Use and Indirect/Direct Land Use Change for CO2 Emissions Related to Agricultural Commodities

    Get PDF
    Increasing demand for food, feed, and fuels adds pressure on ecosystems through land use and land use change (LULUC), with greenhouse gas emissions among the most significant environmental impacts. Large regional variation in LULUC and indirect driving forces may not be adequately addressed by a one-size-fits-all approach that assigns equal LULUC emissions per unit of area, and by a focus on direct d(LU) LUC impacts only. Hence, our method integrates effects from international agricultural commodity trade as indirect emissions (iLULUC) of the demand of food and feed. In most countries, the majority of foods and feedstuffs (70% of global calories) are produced for the domestic market and the rest is exported and contributes to a hypothetical global pool of iLULUC emissions. Total LULUC emissions are calculated for individual countries, accounting for LULUC from increased domestic agricultural production for domestic consumption and for emissions imported from the global market’s iLULUC pool. Furthermore, we estimate consumption-based emission factors for specific product groups per country. Results show that vegetable oils, oil crops, and cereals account for the majority of global LULUC emissions and iLULUC results derived with the presented method cannot be compared directly to dLULUC results; however, their orders of magnitude are similar

    Parity-controlled spin-wave excitations in synthetic antiferromagnets

    Get PDF
    We report in this study the current-induced-torque excitation of acoustic and optical modes in Ta/NiFe/Ru/NiFe/Ta synthetic antiferromagnet stacks grown on SiO2/Si substrates. The two Ta layers serve as spin torque sources with the opposite polarisations both in spin currents and Oersted fields acting on their adjacent NiFe layers. This can create the odd symmetry of spatial spin torque distribution across the growth direction, allowing us to observe different spin-wave excitation efficiency from synthetic antiferromagnets excited by homogeneous torques. We analyse the torque symmetry by in-plane angular dependence of symmetric and anti-symmetric lineshape amplitudes for their resonance and confirm that the parallel (perpendicular) pumping nature for the acoustic (optical) modes in our devices, which is in stark difference from the modes excited by spatially homogeneous torques. We also present our macrospin model for this particular spin-torque excitation geometry, which excellently supports our experimental observation. Our results offer capability of controlling spin-wave excitations by local spin-torque sources and we can explore further spin-wave control schemes based on this concept.Comment: 31 pages, 12 figure

    Tunable magnon-magnon coupling in synthetic antiferromagnets

    Get PDF
    In this work, we study magnon-magnon coupling in synthetic antiferromagnets (SyAFs) using microwave spectroscopy at room temperature. Two distinct spin-wave modes are clearly observed and are hybridised at degeneracy points. We provide a phenomenological model that captures the coupling phenomena and experimentally demonstrate that the coupling strength is controlled by the out-of-plane tilt angle as well as the interlayer exchange field. We numerically show that a spin-current mediated damping in SyAFs plays a role in influencing the coupling strength.Comment: 13 pages, 11 figures(including supplementary

    Kapitel 5. Mitigation des Klimawandels

    Get PDF
    Aufgrund der Größe der betroffenen Landflächen, den bei ihrer Nutzung emittierten und sequestrierten Treibhausgasen (THG) und des teilweise ungünstigen Zustands von Böden in Hinblick auf ihren Gehalt an organisch gebundenem Kohlenstoff (C) kommt der Landnutzung a priori eine wichtige Rolle bei Mitigationsbemühungen zu. Zur Minderung des Klimawandels ist eine Verringerung der atmosphärischen CO2-Konzentration erforderlich, die durch eine Abnahme der THG-Emissionen und durch Aufnahme und langfristige Speicherung von atmosphärischem Kohlenstoff in Biomasse und Boden erreicht werden kann (Chenu et al., 2019; Mayer et al., 2018; Paustian et al., 2016; Vos et al., 2018). Der Erhaltung bzw. idealerweise Erhöhung der organischen Substanz des Bodens durch geeignete Bodenschutzmaßnahmen kommt entscheidende Bedeutung zu

    Quantum Engineering With Hybrid Magnonic Systems and Materials (Invited Paper)

    Get PDF
    Quantum technology has made tremendous strides over the past two decades with remarkable advances in materials engineering, circuit design, and dynamic operation. In particular, the integration of different quantum modules has benefited from hybrid quantum systems, which provide an important pathway for harnessing different natural advantages of complementary quantum systems and for engineering new functionalities. This review article focuses on the current frontiers with respect to utilizing magnons for novel quantum functionalities. Magnons are the fundamental excitations of magnetically ordered solid-state materials and provide great tunability and flexibility for interacting with various quantum modules for integration in diverse quantum systems. The concomitant-rich variety of physics and material selection enable exploration of novel quantum phenomena in materials science and engineering. In addition, the ease of generating strong coupling with other excitations makes hybrid magnonics a unique platform for quantum engineering. We start our discussion with circuit-based hybrid magnonic systems, which are coupled with microwave photons and acoustic phonons. Subsequently, we focus on the recent progress of magnon–magnon coupling within confined magnetic systems. Next, we highlight new opportunities for understanding the interactions between magnons and nitrogen-vacancy centers for quantum sensing and implementing quantum interconnects. Lastly, we focus on the spin excitations and magnon spectra of novel quantum materials investigated with advanced optical characterization

    Kapitel 9. Synopsis – Synergien, Zielkonflikte und Umsetzungsbarrieren von Klimaanpassungs- und Klimaschutzmaßnahmen

    Get PDF
    Es existiert eine Fülle von potenziellen Maßnahmen der Klimawandelanpassung und Emissionsminderung im Bereich der Landnutzung. Allerdings stehen Klimawandelanpassung und Emissionsminderung nicht notwendigerweise in einem synergistischen Zusammenhang. Neben der Klimarelevanz sind auch andere Kriterien von Bedeutung, wenn die integrative Leistungsfähigkeit von Maßnahmen bewertet werden soll. Dazu gehören vor allem mögliche und erwartete Auswirkungen auf die Biodiversität und denWasserhaushalt. Dieses Kapitel fasst die Klimawandelanpassungs- und Emissionsminderungsmaßnahmen und ihre Auswirkungen tabellarisch zusammen. Dabei soll eine integrative, übersichtliche Bewertung der im Special Report behandelten Maßnahmen ermöglicht werden
    corecore