41 research outputs found

    Endovascular Stent Treatment for Symptomatic Benign Iliofemoral Venous Occlusive Disease: Long-Term Results 1987–2009

    Get PDF
    Venous stenting has been shown to effectively treat iliofemoral venous obstruction with good short- and mid-term results. The aim of this study was to investigate long-term clinical outcome and stent patency. Twenty patients were treated with venous stenting for benign disease at our institution between 1987 and 2005. Fifteen of 20 patients (15 female, mean age at time of stent implantation 38 years [range 18–66]) returned for a clinical visit, a plain X-ray of the stent, and a Duplex ultrasound. Four patients were lost to follow-up, and one patient died 277 months after stent placement although a good clinical result was documented 267 months after stent placement. Mean follow-up after stent placement was 167.8 months (13.9 years) (range 71 (6 years) to 267 months [22 years]). No patient needed an additional venous intervention after stent implantation. No significant difference between the circumference of the thigh on the stented side (mean 55.1 cm [range 47.0–70.0]) compared with the contralateral thigh (mean 54.9 cm [range 47.0–70.0]) (p = 0.684) was seen. There was a nonsignificant trend toward higher flow velocities within the stent (mean 30.8 cm/s [range 10.0–48.0]) and the corresponding vein segment on the contralateral side (mean 25.2 cm/s [range 12.0–47.0]) (p = 0.065). Stent integrity was confirmed in 14 of 15 cases. Only one stent showed a fracture, as documented on x-ray, without any impairment of flow. Venous stenting using Wallstents showed excellent long-term clinical outcome and primary patency rate

    Estimating Impact Forces of Tail Club Strikes by Ankylosaurid Dinosaurs

    Get PDF
    BACKGROUND: It has been assumed that the unusual tail club of ankylosaurid dinosaurs was used actively as a weapon, but the biological feasibility of this behaviour has not been examined in detail. Ankylosaurid tail clubs are composed of interlocking vertebrae, which form the handle, and large terminal osteoderms, which form the knob. METHODOLOGY/PRINCIPAL FINDINGS: Computed tomographic (CT) scans of several ankylosaurid tail clubs referred to Dyoplosaurus and Euoplocephalus, combined with measurements of free caudal vertebrae, provide information used to estimate the impact force of tail clubs of various sizes. Ankylosaurid tails are modeled as a series of segments for which mass, muscle cross-sectional area, torque, and angular acceleration are calculated. Free caudal vertebrae segments had limited vertical flexibility, but the tail could have swung through approximately 100 degrees laterally. Muscle scars on the pelvis record the presence of a large M. longissimus caudae, and ossified tendons alongside the handle represent M. spinalis. CT scans showed that knob osteoderms were predominantly cancellous, which would have lowered the rotational inertia of the tail club and made it easier to wield as a weapon. CONCLUSIONS/SIGNIFICANCE: Large knobs could generate sufficient force to break bone during impacts, but average and small knobs could not. Tail swinging behaviour is feasible in ankylosaurids, but it remains unknown whether the tail was used for interspecific defense, intraspecific combat, or both

    The evolution of the upright posture and gait—a review and a new synthesis

    Get PDF
    During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories

    Self domestication and the evolution of language

    Get PDF

    Stents: Neue Entwicklungen und Perspektiven

    No full text
    corecore