2 research outputs found

    Convergence Properties of Solutions of a Length-Structured Density-Dependent Model for Fish

    Get PDF
    We numerically study solutions to a length-structured matrix model for fish populations in which the probability that a fish grows into the next length class is a decreasing nonlinear function of the total biomass of the population. We make conjectures about the convergence properties of solutions to this equation, and give numerical simulations which support these conjectures. We also study the distribution of biomass in the different age classes as a function of the total biomass

    A Simple Way to Incorporate Novelty Detection in World Models

    Full text link
    Reinforcement learning (RL) using world models has found significant recent successes. However, when a sudden change to world mechanics or properties occurs then agent performance and reliability can dramatically decline. We refer to the sudden change in visual properties or state transitions as {\em novelties}. Implementing novelty detection within generated world model frameworks is a crucial task for protecting the agent when deployed. In this paper, we propose straightforward bounding approaches to incorporate novelty detection into world model RL agents, by utilizing the misalignment of the world model's hallucinated states and the true observed states as an anomaly score. We first provide an ontology of novelty detection relevant to sequential decision making, then we provide effective approaches to detecting novelties in a distribution of transitions learned by an agent in a world model. Finally, we show the advantage of our work in a novel environment compared to traditional machine learning novelty detection methods as well as currently accepted RL focused novelty detection algorithms
    corecore