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Convergence Properties of Solutions of a
Length-Structured Density-Dependent Model
for Fish

By Geigh Zollicoffer'

Abstract. We numerically study solutions of a length-structured matrix model for fish
populations in which the probability that a fish grows into the next length class is a de-
creasing nonlinear function of the total biomass of the population. We make conjectures
about the convergence properties of solutions, and give numerical simulations which
support these conjectures. We also study the distribution of biomass in the different
length classes as a function of the total biomass.

1 Introduction and Background

In this paper we numerically analyze a discrete-time, nonlinear length-based model for a
fish population. This model has been mathematically studied (with proofs) in Callahan,
et. al. [1], with a restrictive condition on the survival probabilities. This condition is that
the survival of fish is a nondecreasing function of the length of the fish. However, in
practice, survival probabilities may not always satisfy this condition. For instance, if
angling is allowed in the habitat, larger fish can have lower survival than smaller fish. In
this paper we numerically study the solutions of this model when this condition on the
survival probabilities is removed. We make conjectures that are stronger than the results
proved in [1], and give numerical examples that make these conjectures plausible.

In [1] references are given for papers that give fish population models which incorpo-
rate length structure. These papers give justifications for incorporating length structure
into a population model. For instance, it is known that many fish species are less likely
to grow when their habitat is crowded. Thus it makes sense to include in this model
the condition that the probability that a fish moves to a larger length class in one time
step is a decreasing function of the total amount of fish biomass in the habitat. This
function should be positive, should take the value 1 when there is no biomass (since
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2 Conv. Prop. for a Length-Structured Density-Dependent Model for Fish

with no crowding fish are guaranteed to grow), and should approach 0 as the biomass
gets infinite (since with “infinite" crowding fish cannot grow). To keep the modeling
manageable, in these models it is assumed that there is only one fish species in the habi-
tat. Incorporating such a nonlinearity into the model means that when the population
gets too big, there’s pressure to keep it down, and when the population is small, it grows
unimpeded. Thus it is plausible that there are circumstances under which we expect the
population to converge. In [1] it is shown that under certain conditions the biomass con-
verges uniformly (i.e. independent of the initial conditions), and we conjecture that in
fact under those circumstances the population vectors converges uniformly, even when
the survival hypotheses used in [1] are not satisfied. In this paper we give conjectures
about uniform convergence of the population vectors, and give numerical simulations
which make these conjectures plausible.

The paper is organized as follows. In Sect. 2 we describe the discrete-time nonlinear
length-structured model, taken directly from [1], which we are studying. In this model
the probability that a fish will grow into the next length class in one time step is a
nonlinear function of the total biomass of the population. In Sect. 3 we make conjectures
about the convergence properties of solutions to the model. In Sect. 4 we give numerical
results that are consistent with these conjectures. We use as a case study an invasive
white perch species studied in [2, 1]. For the purposes of angling, a long-term population
which is dominated by fish in the larger length classes is desirable, and in Sect. 5 we
make connections between the distribution of biomass and the survival rates and total
biomass.

Notation: Denote transpose by a T superscript, a row vector by ', [v1, v1,..., v,] or
[v;]. Denote a column vector by, [vy, vy,..., v,T or [vj]T. The spectral radius of a square
matrix A is denoted by p(A), and is the modulus of the largest eigenvalue of A. The
1-norm of a vector is denoted by ||[|, and is the sum of the absolute values of the entries.

2 Mathematical Model

This length-based model was introduced in [1], and is similar to models in [3, 5], and is
related to the age-structured models in [2, 6]. We begin by using the following model
design pulled directly from [1]. There are n length classes of reproductively viable fish,
and we denote the population in each class after ¢ time steps by P;(¢), P2(?), ..., P, (?).
We define the population vector to be P(¢) = [Py(t), Py (?),..., P, (01T e R"*1. We assume
that newborn fish cannot reproduce in their first time step of life and place them in a
zeroth class with population Py (¢). After one time step, surviving newborn fish enter
class 1 with population P (#). Let L; be the average length of fish in class i =0, 1,...n, so
Lo is the average length of newborn fish. The time step size is constant and might be
determined by the behavior of the species or by the timing of the data collection. We
assume that in each time step a surviving fish either stays in its length class or grows
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Geigh Zollicoffer 3

into the next length class but cannot skip beyond the next length class, so L;; —L; is the
maximum a fishin class i = 1,2,...n—1 can grow in one time step.

Let s; be the survival rate of fish in class i =0, 1,...n each year and f; the fecundity of
fishinclassi=1,2,...n each year. We assume that the time step in the model is less than
or equal to the time needed to reach maturation size. In [1] the following assumptions
are made:

A: The survival rates satisfy 0 < s; < 1 and the fecundities f; = 0 and not all f; = 0. The
sequences (fj ;’:0 and (s;) ;?:0 are nondecreasing.

The condition on ( fj)?:o is satisfied for most species since the fecundity of larger
fish is greater because larger fish can hold more eggs. The assumption that the survivals
(s7) ;.’:0 are nondecreasing, is not as plausible, since angling can decrease the population
of large fish more than the population of small fish. One of the purposes of the current
paper is to study what happens when the survival condition in Assumption A is removed.
Therefore, in this paper we will work with the modified assumptions:

A’: The survival rates satisfy 0 < s; < 1 and the fecundities f; = 0 and not all f; = 0.
The sequence ( fj)?:o is nondecreasing.

Let p; be the probability at time step ¢ that a fish grows into the next length class in
one time step. We use a model of the form

P(t+1) = Ap,P(1)

where
[ 0 fl fZ f3 fn—z fn—l fn ]
So s1t(1—pyp 0 0 0 0 0
0 S1P¢ $2(1—=py) 0 0 0 0
Ap, = 0 0 2Pt s3(1=py) 0 0 0 1)
0 0 0 0 o Sp2Pr Sn—1l—py) O
| 0 0 0 0 0 Sn—-1Pr Sn |

Thus the population at time #+1is a A, times the population at time ¢. This equation
is solvable once an initial population P(0) is specified. A matrix of this type is known as a
“population projection matrix". We now give an interpretation of this matrix. When the
top row is multiplied by the population vector, we get

n
> fiPj(@),
=1

which can be interpreted as the number of newborns generated by the current popu-
lation. Hence the Oth entry of A, ,P() is the number of newborns generated from the
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4 Conv. Prop. for a Length-Structured Density-Dependent Model for Fish

current population. The jth entry of A, P(#) for j =2,...nis
Sj—-1pPj-1+s;(1 = py)P;.

Since p; is the probability that a fish will move to the next length class, this can be
interpreted as the number of fish that survived and got bigger from the (j — 1)th length
class, plus the number of fish that survived and didn’t get bigger from the jth length
class. When j = 1, the jth entry of A, [P(¢) is just how many survive from the Oth class.

Asin [1, 2, 6], we assume that p; is a strictly decreasing function of the population
biomass. That is, the more biomass there is in the population, the less likely a fish is to
move to the next length class. Furthermore, we expect the probability to be near zero
when the biomass is very large, and we expect the probability to be 1 when the biomass
is zero. Let B(#) denote the population biomass at time step t. We need to identify a
function g so that p; = g(B(1)).

In [1, 2, 6] that function is

WVN=7
& 1+ bgrowth y
where bg;ou ¢ is a scaling parameter. Note that that g is strictly decreasing on [0,00)
(since more biomass means lower probability), g(0) = 1 (since no biomass means proba-
bility 1) and lim,, ., g(y) = 0 (since large biomass means small probability).
Following [1, 2, 6], we assume that the mass of a fish oflength L; is W; = (xL? where a is

the mass-length coefficient. The population biomass at time step ¢ is then approximated
by

B(r) =) W;P; (1) 2)
i=0

We study the nonlinear dynamical system
P(t+1) =Ap,P(0), pr = gB(1), P(0) =Po. 3)

This system gives the population at time step ¢+ 1 as the matrix multiplication of matrix
Ap, with the population P(#), where the probability of growth p, is updated at each time
step.

3 Mathematical Conjectures

In this section we give some conjectures about the solutions to (3).

Definition 3.1. A vector is positive if all of its entries are positive. A vector is nonnegative
if all its entries are nonnegative. A nonnegative vector is nonzero if not all its entries are
Zero.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



Geigh Zollicoffer 5

In the study of dynamical systems, the equilibria play a central role. An equilibrium
is a vector that is unchanged by the system from a time step to the next.

Definition 3.2. 1. We say that a vector P* = [P}, P57, ... P,1T is an equilibrium for (3) if

n
P* =A,P*, p* =g([B"),B" =) W;P;
i=0

2. We say that an equilibrium P* for (3) is globally attracting if for every nonnegative
nonzero Py,
lim P, =P".

t—o00

The goal of this paper is to use simulations to make the following conjecture plausible.
Conjecture 3.1. 1. If p(A;) <1, then the zero population is globally attracting.

2. If p(Ap) > 1, then tlim [P(2) |l = oo for all nonzero nonnegative initial states P(0).
—00

3. If p(Ap) <1< p(Aj), then the system has a unique nonzero positive equilibrium P*
which is globally attracting.

Before discussing what these conjectures mean, we will discuss the role of the spectral
radius in predicting population dynamics. Consider first the simpler linear model

P(t+1) = AP(7). (4)

for a constant matrix A. It is well known from linear algebra that the long term behavior
of P(#) is determined by p(A). Roughly speaking, if p(A) < 1, then all solutions of (4) go to
zero; if p(A) > 1, then all solutions of (4) go to infinity in norm; if p(A) = 1, all solutions
converge, but not uniformly. The moral is that the growth, decay or convergence of the
population is determined by p(A) in the linear case. In our nonlinear model, the analysis
uses p(Ap) and p(A;):

For Case 1 of Conjecture 3.1: A; describes what happens when the probability of a
fish moving to the next length class in one time step is always 1 - this is in some sense the
“best case scenario" for the fish. If p(A;) < 1, that means that in the best case scenario
the population goes to zero, so it is plausible that the solution of (3) goes to zero as well.

For Case 2 of Conjecture 3.1: Ay describes what happens when the probability of a
fish moving to the next length class in one time step is always 0 - this is in some sense the
“worst case scenario" for the fish. If p(Ag) > 1, that means that in the worst case scenario
the population goes to infinity, so it is plausible that the solution of (3) goes to infinity as
well.

In Case 1 the population is endangered, while Case 2 is unlikely to happen in a
physical habitat. If the population is not endangered and the population is known to

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



6 Conv. Prop. for a Length-Structured Density-Dependent Model for Fish

stay finite, the nonlinear probability of growth kicks in, and Case 3 is likely to occur.
The conjectures for Case 1 and Case 2 were proved in [1] when the survivals are a
nondecreasing function of size class (i.e. under Assumption A). In this paper we give
numerical examples which help support Cases 1 and 2 of the conjecture under the
weaker Assumption A’. In this paper we give numerical examples that help support Case
3 of the conjecture under Assumption A’.

4 Numerical Simulations

We have done extensive simulations which support Conjecture 3.1 under Assumption A'.
We will give examples to illustrate each of the cases in this Conjecture. As a case study we
will use the parameters for the white perch population studied in [1, 2]. Please see these
papers for a discussion of this species. We will use the simulation parameters L;, f;, and o
given in Section 4 of [1] (with n = 8, so there are nine stages in the population vector). We
will be varying the survival probabilities s; to get the three cases in Conjecture 3.1. Since
Cases 1 and 2 of Conjecture 3.1 have been established in [1] when (s;) is nondecreasing,
our examples will use survivals that are not nondecreasing, so Assumption A’ holds but
Assumption A does not.

1. For case 1, we'll use survival rates
.2, .8, .2, .8, .2, .8, .2, .8, .2].

In this case p(A;) = 0.777272 < 1, so this satisfies the hypotheses of case 1. The
population dynamics for this model (with an arbitrarily chosen initial population)
are given in Figure 1. The top graph represents the first size class, and the bottom
graph represents the last size class.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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Figure 1: Example for case 1 of Conjecture 1, p(A;) < 1; the population appears to
converge to the predicted zero population. The number of time steps is given on the
X-axis, and the current population count is given on the Y-axis. The top graph represents
the first size class, and the bottom graph represents the last size class.

For us to determine that the population converges to zero, the population for each
size class is compared after each time step with the previous time step and the
absolute value of the difference is calculated. If the difference was less than 27192
(which is the smallest float in Matlab), then our criteria for convergence is met
and we conclude convergence. We repeated this simulation for many randomly
chosen initial populations, and for every initial condition the population appeared
to converge to zero.

2. For case 2, we use the following survival rates:

(.99, 1, .97, .96, .95, .94, .93, .92, 91]

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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Figure 2: Example for case 2, p(Ag) > 1; tlim IP(5)]l = co and p; approaches 0. The

number of time steps is given on the X-axis, and the current population count is given on
the Y-axis. The top graph represents the first size class, and the bottom graph represents
the last size class.

In this case we see that p(Ag) = 1.007207 > 1. We determine for this case con-
vergence to infinity by setting a large upper bound, and showing that the total
population eventually exceeds that upper bound. We did simulations with 100,000
time steps, and found clear evidence that the population in the first two stages
goes to infinity, the population in the third stage goes to 6.2985 x 10°, and the
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Geigh Zollicoffer 9

population in the larger stages goes to zero. We only show 1000 time steps in
Figure 2, in order to get a clearer picture. As expected, the probability p; appears
to converge to zero, but does not get to zero because the biomass does not get
to infinity. Also, we see in this example an extreme case of stunting, where the
population of the smaller fish dominates as the population gets more and more
crowded.

3. For case 3, we use survival rates:

[[7.7.7.7.4.4.4.4.4]

700

700

700

700

700

700

700

700

100 200 300 400 500 600
;S‘Z‘E 1 1 1 1 1 i
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100 200 300 400 500 600
498 \ \ \ \ \ j
496EE
494 | | | | |

100 200 300 400 500 600
sggﬁ \ \ \ \ \ j
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esE ~ \ \ \ \ \ j
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94 \ \ \ \ \ \
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4 \ \ \ \ \ \ 3
0 —

OE \ \ \ \ \ \
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Figure 3: Example for case 3, p(Ag) <1 < p(A;); the population converges to a unique
limiting population. The number of time steps is given on the X-axis, and the current
population count is given on the Y-axis. The top graph represents the first size class, and
the bottom graph represents the last size class.

In this case p(Ag) = 0.707258 and p(A1) = 1.149390, so p(Ap) < 1 <p(Ay), and the
hypotheses for case 3 are satisfied. We determined and tested convergence to the
limiting population in the same way that we tested convergence to zero in case 1,

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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10 Conv. Prop. for a Length-Structured Density-Dependent Model for Fish

using the tolerance 271921, It is easy to check that the limiting population is in fact
an equilibrium.

Part of cases 1 and 3 of Conjecture 3.1 is that the convergence is independent of the
initial population. To illustrate this, we give in the Appendix two charts - one for Case
1 and one for Case 3 - where the top rows gives 15 initial populations vectors, and the
bottom row gives the corresponding limiting population vectors. We see from these
that the limiting population is indeed independent of the initial population (up to at
least seven significant figures) in these examples. Thus in Case 1 it appears that the zero
vector is in fact globally attracting, and in Case 3 it appears that the positive equilbrium
is in fact globally attracting. We found the same type of results for other examples.

We have automatically generated approximately 3000+ simulations, each with sur-
vivals randomly generated from a uniformly random distribution, and random initial
conditions also from a uniformly random distribution. All of them are consistent with
Conjecture 3.1. Of course, that is not a proof of Conjecture 3.1, but it does make the
Conjecture very plausible.

5 Distribution of biomass in the limiting population

[1] studied (in Case 3 and examples where the survivals were nondecreasing) the rela-
tionship between the limiting total population biomass and the distribution of biomass
in the nine stages. It was found, and proved mathematically, that as the total biomass
got larger, the biomass became more concentrated in the lower stages. In this paper we
would like to illustrate that we expect this to happen even when the survivals are not
nondecreasing. In our case study, we use all of the parameter values from the previous
section, except we use the survivals

(9-qa, 98—qa, 97—qa, 96—, 95—, 94—, 93—, .92—q, 91 —)

where « is a parameter which varies from 0 to .91. The total limiting population biomass
is very large when « is very close to 0, and is very close to 0 when a is close to .91; since
we cannot take infinitely many time steps, the total biomass never gets to zero. We show
the total biomass on the curve in Figure 4, with value of a on the x-axis and the biomass
scale shown on the right y-axis. To illustrate the biomass distribution with a heat map,
we take 9 equally-spaced values of a, and above each value of a there are colored boxes
which indicate what fraction of the biomass is in each of the nine length stages. The
stages are shown on the left y-axis, the the smallest stage at the top and the largest stage
at the bottom (note that we label the stages 1 through 9 instead of 0 through 8). The scale
for the heat map is on the top of Figure 4.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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Figure 4: Heat map for biomass distribution as a function of a. The values of o are shown
on the X-axis, and the survivals decrease with increasing a. The left side Y-axis shows the
stages, and the right side Y-axis is total biomass scale. The curve gives the biomass for
each choice of a, and the color gives what fraction of the biomass is in each of the length
stages.

In all cases a small fraction of the biomass is in the newborn fish class. When a is near
zero, the total biomass is very high, and is skewed towards the P; class. As a increase, we
see that the biomass percentage shifts towards the larger classes of fish until a = .455.
Between a = .455 and «a =.56875, the total biomass in the system falls to near zero, and
stays there for larger values of a. Calculating the spectral radius of A; and Ay where o =
.455, yields p(A;) = 1.000507 and p(Ap) = 0.532369, which is Case 3. When a = .568750,
p(A1) =0.807852 and p(Ag) = 0.418629, which is Case 1. Thus the system changes from
Case 3 to Case 1 for some a between .455 and .56875. Just looking at a from 0 to .455,
we're in the most interesting case, and we see that smaller biomass corresponds to a
larger percentage of large fish. This is numerical evidence that the relationship between
size distribution and population biomass found in [1] still holds (at least until biomass

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



12 Conv. Prop. for a Length-Structured Density-Dependent Model for Fish

near zero) even when Assumption A is weakened to Assumption A'.

For larger values of o, we're in Case 1, where where the population crashes; however,
in practice, we'll never get to zero biomass, so it is still of theoretical interest how the
population is distributed, and the heat maps shows a limiting biomass distribution. We
find that as a gets closer to 1 (so the survivals get smaller), the population starts moving
towards smaller fish, which was not expected.

6 Conclusions

In this paper we study a discrete-time length-structured model for invasive fish which
incorporates a nonlinear growth probability. This model was proposed in [1], and studied
there with the restrictive condition that the survival parameters be nondecreasing (i.e.
Assumption A). We numerically studied the case where the survival parameters do not
satisfy this restrictive condition (i.e. Assumption A’. We give Conjecture 3.1 about the
long-term behavior of the solutions - this conjecture is stronger than the results in
[1]. We then do numerical simulations to test this conjecture, and all simulations are
consistent with the conjecture. Finally, we study the effect of the total biomass on the
length distribution of the limiting population. This paper gives numerical evidence that
the nondecreasing condition on the survivals needed in [1] (i.e. Assumption A) is not
really important in the long-term dynamics the model.

These results are significant because population managers care about the long-term
behavior of populations, both for predicting and managing fish populations. In nature,
survival rates are not necessarily nondecreasing with length, so it is important to consider
cases where Assumption A is not satisfied. This study makes it plausible that if the
populations are bounded (which is expected in real habitats), then the population either
goes to zero, or the population approaches some equilibrium which is independent of
the initial population. The independence of initial population is important because it
implies that the limiting population can be computed even if the initial population is
unknown. In the future, we'd like to prove Conjecture 3.1 under Assumption A’ holding.
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7 Appendix

In this Appendix we illustrate the part of Conjecture 3.1 that says that in Cases 1 and 3

the limiting population is independent of the initial population. Figure 5 illustrates

the convergence to zero in Case 1, and Figure 6 illustrates the convergence to an

equilibrium in Case 3. The top rows represent the randomly chosen initial populations

vectors, and the bottom rows represent the corresponding limiting population vector.
Test1 [Test2  [Test3

Test1l ([Test12 |Test13 |Test1ld |Testi15
Initial Population vectors

Population Class 0 | 353.4217 2353.124 1812.296 4904.518 2883.791 1862.671 3334.658 1944.419 4498.567 614.075 3474.026 93.06387 1873.461 2000.399 2699.525
Population Class 1 = 4613.723 2803.567 3940.567 1433.102 129.2874 2965.923 4668.628 2273.709 2251.968 2036.592 4171.845 3373.882 2732.769 4159.357 476.8635
Population Class 2 4001.86 1345458 3901.479 4004.101 2232.655 4362.763 4054.75 1233.436 1028.362 1375.435 3048.143 2192.544 2809.601 671.6917 732.5743
Population Class 3 1425.734 3745.092 3342.561 4480.557 3231.51 4667.508 2422.741 3922.115 4498.255 3583.349 2873.686 2189.101 1979.111 302.3339 3155.706
Population Class4 | 2718.316 2519.439 667.5193 2937.633 2606.015 3342.321 3783.746 4414.188 3812.928 1416.922 1630.211 585.1841 1990.654 421.2353 4296.602
Population Class 5 4923.881 3234.048 107.7794 4420.084 1861.563 1033.882 2085.237 4568.558 4412432 4480.994 2282.123 4073.408 2576.836 B819.4916 4871.108
Population Class 6 3578.39 1538.728 2799.204 4718.658 4685.673 3269.253 4858.93 2791.425 1424.751 4132.894 3568.978 1624.277 3287.653 1621.1 2854.192
Population Class 7 | 4194.848 693.6232 1504.095 2745.79 4147.664 360.2578 4939.874 2994.341 3366.13 1950.133 4422.025 1231.141 4754.576 1508.634 4984.251
Population Class 8 | 2166.303 2377.865 4697.049 3641.934 4245427 2033.635 4320.738 744.3836 33214 2489.515 3604.278 1713.566 3611.743 58.40456 2767.708
Limiting Population Vectors
Population Class 0 1.81E-12( 1.83E-12| L.71E-12| 1.64E-12| 2.22E-12( 1.67E-12| 1.81E-12| 1.59E-12| 1.58E-12( 1.68E-12| 1.61E-12| 2.08E-12| 2.25E-12| 2.22E-12| 1.67E-12
Population Class 1 5.22E-13( 5.27E-13| 4.92E-13| 4.74E-13| 6.41E-13| 4.82E-13| 5.24E-13| 4.58E-13| 4.56E-13| 4.85E-13| 4.66E-13| 6.01E-13| 6.50E-13| 6.42E-13| 4.83E-13
Population Class 2 1.51E-13| 1.52E-13| 1.42e-13| 1.37E-13| L.85E-13( 1.39E-13| 1.51E-13| 1.32E-13| 1.32E-13| L.40E-13| 1.35E-13| 1.74E-13| 1.88E-13| L.B3E-13| 1.39E-13
Population Class 3 1.74E-13( 1.76E-13| 1.64E-13| 1.58E-13| 2.14E-13( 1.61E-13| 1.75E-13| 1.53E-13| 1.52E-13| 1.62E-13| 1.56E-13| 2.01E-13| 2.17E-13| 2.14E-13| 1.61E-13
Population Class 4 5.03E-14( 5.08E-14| 4.74E-14| 4.506E-14| 6.17E-14| 4.64E-14| 5.04E-14| 4.41E-14| 4.39E-14| 4.67E-14| 4.49E-14( 5.79E-14| 6.26E-14| 6.18E-14| 4.65E-14
Population Class 5 5.81E-14( 5.87E-14| 5.48E-14| 5.27E-14| 7.13E-14| 5.36E-14| 5.82E-14| 5.10E-14| 5.08E-14| 5.40E-14| 5.19E-14| 6.69E-14| 7.23E-14| 7.14E-14| 5.37E-14
Population Class 6 1.68E-14| 1.69E-14| 1.58E-14| 1.52E-14| 2.06E-14( 1.55E-14| 1.68E-14| 1.47E-14| L.47E-14( 1.56E-14| 1.50E-14| 1.93E-14| 2.09E-14| 2.06E-14| 1.55E-14
Population Class 7 1.94E-14| 1.96E-14| 1.83E-14| 1.76E-14| 2.38E-14( 1.79E-14| 1.94E-14| 1.70E-14| 1.659E-14| 1.80E-14| 1.73E-14| 2.23E-14| 2.41E-14( 2.38E-14| 1.79E-14
Population Class 8 7.87E-15| 7.94E-15| 7.42E-15| 7.14E-15| 9.66E-15| 7.26E-15| 7.89E-15| 6.90E-15| 6.87E-15| 7.31E-15| 7.02E-15| S9.06E-15| 9.79E-15| 9.67E-15| 7.28E-15

Test 4 Test5 Test 6 Test7 Test 8 Test9 Test 10

Figure 5: 15 initial populations and their respective limiting populations of case 1 of
conjecture 1, all initial populations lead to limiting populations that are indistinguishable
from zero.
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Test1 Test2 Test3 Test1l |Test12 |Test13 (Test1l4 |Test1s
Initial Population vectors

Population Class 0 | 353.4217 2353.124 1812.296 4904.518 2883.791 1862.671 3334.658 1944.419 4498.567 614.075 3474.026 93.06387 1878.461 2000.389 2699.525
Population Class 1 = 4613.723 2803.567 3940.567 1433.102 129.2874 2965.923 4668.628 2273.709 2251.968 2036.592 4171.845 3373.882 2732.769 4159.357 476.8635
Population Class 2 4001.86 1345.458 3501479 4004.101 2232.655 4362.763 4054.75 1233.436 1028.362 1376.435 3048.148 2192.544 2809.601 671.6917 732.5743
Population Class 3 | 1429.734 3745.092 3342.561 4480.557 3231.51 4667.508 2422.741 3922.115 4498.255 3583.349 2873.686 2189.101 1979.111 302.3339 3155.706
Population Class 4 | 2718.316 2519.439 667.5193 2987.633 2606.015 3342.321 3783.746 4414.188 3812.928 1416.922 1630.211 585.1841 19590.654 421.2353 4296.602
Population Class 5 = 4923.881 3234.048 107.7794 4420.084 1861.563 1033.882 2085.237 4568.558 4412.432 4480.994 2282.123 4073.408 2576.836 819.4916 4371.108
Population Class 6 3578.39 1538.728 2799.204 4718.658 4685.673 3269.253 4858.93 2791.425 1424.751 4132.894 3568.978 1624.277 3287.653 1621.1 2854.192
Population Class 7 | 4194.848 693.6232 1504.095 2745.79 4147.664 360.2578 4939.874 2994.341 3366.13 1950.133 4422.025 1231.141 4754.576 1508.634 4984.251
Population Class 8 | 2166.303 2377.865 4697.049 3641.934 4245427 2033.635 4320.738 744.3836 33214 2489.515 3604.278 1713.566 3611.743 58.40456 2767.708
Limiting Population Vectors
Population Class 0 1.81E-12( 1.83E-12| 1.71E-12| 1.64E-12| 2.22E-12( 1.67E-12| 1.81E-12| 1.59E-12| 1.58E-12( 1.68E-12| 1.61E-12| 2.08E-12| 2.25E-12| 2.22E-12| 1.67E-12
Population Class 1 5.22E-13( 5.27E-13| 4.92E-13| 4.74E-13| 6.41E-13| 4.82E-13| 5.24E-13| 4.58E-13| 4.56E-13| 4.85E-13| 4.66E-13| 6.01E-13| 6.50E-13| 6.42E-13| 4.83E-13
Population Class 2 1.51E-13| 1.52E-13| 1.42e-13| 1.37E-13| 1.85E-13( 1.39E-13| 1.51E-13| 1.32E-13| 1.32E-13| 1.40E-13| 1.356-13| 1.74E-13| 1.88E-13| L.B5E-13| 1.39E-13
Population Class 3 1.74E-13( 1.76E-13| 1.64E-13| 1.58E-13| 2.14E-13( 1.61E-13| 1.75E-13| 1.53E-13| 1.52E-13| 1.62E-13| 1.56E-13| 2.01E-13| 2.17E-13| 2.14E-13| 1.61E-13
Population Class 4 5.03E-14( 5.08E-14| 4.74E-14| 4.56E-14| 6.17E-14| 4.64E-14| 5.04E-14| 4.41E-14| 4.39E-14| 4.67E-14| 4.49E-14( 5.79E-14| 6.26E-14| 6.18E-14| 4.65E-14
Population Class 5 5.81E-14( 5.87E-14| 5.48E-14| 5.27E-14| 7.13E-14| 5.36E-14| 5.82E-14| 5.10E-14| 5.08E-14| 5.40E-14| 5.19E-14( 6.69E-14| 7.23E-14| 7.14E-14| 5.37E-14
Population Class 6 1.68E-14| 1.69E-14| 1.58E-14| 1.52E-14| 2.06E-14( 1.55E-14| 1.68E-14| 1.47E-14| L.47E-14( 1.56E-14| 1.50E-14| 1.93E-14| 2.09E-14| 2.06E-14| 1.55E-14
Population Class 7 1.94E-14( 1.96E-14| 1.83E-14| 1.76E-14| 2.38E-14( 1.79E-14| 1.94E-14| 1.70E-14| 1.69E-14( 1.80E-14| 1.73E-14| 2.23E-14| 2.41E-14| 2.38E-14| 1.79E-14
Population Class 8 7.87e-15] 7.94E-15 T7.42e-15| 7.14E-15| 9.66E-15| 7.26E-15| 7.89E-15| 6.90E-15| 6.87E-15| 7.31E-15| 7.02E-15| 9.06E-153| 9.79E-15| 9.67E-13| 7.28E-15

Test4 Test5 Test 6 Test7 Test 8 Test9 Test 10

Figure 6: 15 initial populations and their respective limiting populations of case 1 of
conjecture 1, all initial populations lead to limiting populations that are indistinguishable
from zero.

Testl Test2 Test 3 Test4 Test5 Test 6 Test7 Test 8 Test9 Test10 ([Test1l |Test1l2 |Test13 |Test14 |Test15

Initial Population vectors
Population Class 0 | 2233.919| 2664.128| 2354.617| 4616.898| 2974.48| 2539.291| 1186.418| 1977.576| 1676.784| 4518.603| 4523.611| 143.3708| 212.1557| 2592.975| 866.9431
Population Class 1 | 1531.747| 1753.636| 1152.441| 2151.037| 1311.059| 427.579| 2294.244| 1837.183| 3398.64| 4454.613| 3049.333| 2449.507| 357.2273| 4864.873| 1954.689
Population Class 2 | 2542.543| 4695.008| 4221.544| 924.0816| 3014.215| 1312.411| 4815.443| 4939.91| 682.7657| 1670.815| 3088.332| 839.6357| 2608.249| 3244.957| 4156.899
Population Class 3 | 2553.858| 4379.714| 973.8214| 4524.405| 3556.079| 4005.073| 2734.029| 188.6943| 3606.137| 3493.729| 4297.212| 4893.403| 483.6501| 4001.653| 4016.822
Population Class 4 | 4088.139| 2750.782| 1129.609| 4898.742| 1108.734| 146.1014| 2605.679| 4425.84| 533.8093| 989.0491| 4027.447| 3563.472| 4090.743| 2268.989| 302.3559
Population Class 5 | 3974.157| 3112.375| 853.5402| 2194.35| 587.0883| 4644.271| 1157.972| 4566.434| 3268.787| 152.7047| 2883.608| 2502.358| 4087.735| 2161.958| 1996.289
Population Class 6 | 3221.591| 2935.224| 1138.321| 555.5961| 1483.379| 3651.654| 2444.489| 3980.919| 2470.87| 3720.371| 914.6123| 2355.442| 3612.198| 4126.569| 2634.379
Population Class 7 | 1893.047| 1038.711| 2178.493| 1290.323| 1593.892| 2443.045|  3120.3| 493.5614| 3895.259| 2500.112| 1199.66| 298.0943| 749.3272| 417.3491| 2083.997
Population Class 8 | 4057.902| 1506.232| 1555.511| 2043.599| 2120.834| 2892.625| 3395.678| 1309.356| 3575.185| 2399.611| 4432.56| 3409.86| 3298.026| 665.855| 3284.299
Limiting Population vectors
13 [Population Class 0 | 388192.4| 388192.4| 388192.4| 388192.4| 388192.4| 388192.4| 388192.4| 388192.4| 388192.4| 388192.4( 388192.4| 388192.4| 388192.4| 388192.4| 388192.4
14 Population Class 1 |11037584|11037584|11037584|11037584|11037584|11037584|11037584|11037584|11037584|11037584(11037584|11037584|11037584|11037584|11037584
15 |Population Class 2 1187950 1187950| 1187950| 1187950| 1187950| 1187950| 1187950 1187950( 1187950| 1187950 1187950| 1187950 1187950| 1187950| 1187950
16 Population Class 3 103528 103528 103528 103528| 103528| 103528| 103528 103528 103528 103528 103528 103528| 103528 103528| 103528
17 |Population Class 4 | 7554.574| 7554.574| 7554.574| 7554.574| 7554.574| 7554.574| 7554.574| 7554.574| 7554.574| 7554.574( 7554.574| 7554.574| 7554.574| 7554.574| 7554.574
18 |Population Class 5 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728| 472.728
19 Population Class 6 | 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288| 25.82288
20 Population Class 7 | 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516| 1.248516
21 Population Class 8 | 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708| 0.062708
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Figure 7: 15 initial populations and their respective limiting populations of case 3 of
conjecture 1, all initial conditions lead to the same limiting vector to seven significant
figures.
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